
The History of


# Density and Pressure





## Archimedes

- Born in 287 BC in Syracuse, Italy
- Traveled to Alexandria during his youth – learned geometry and engineering
- Applied knowledge to construct war machines & other inventions:
  - Death ray
  - Spiral pump



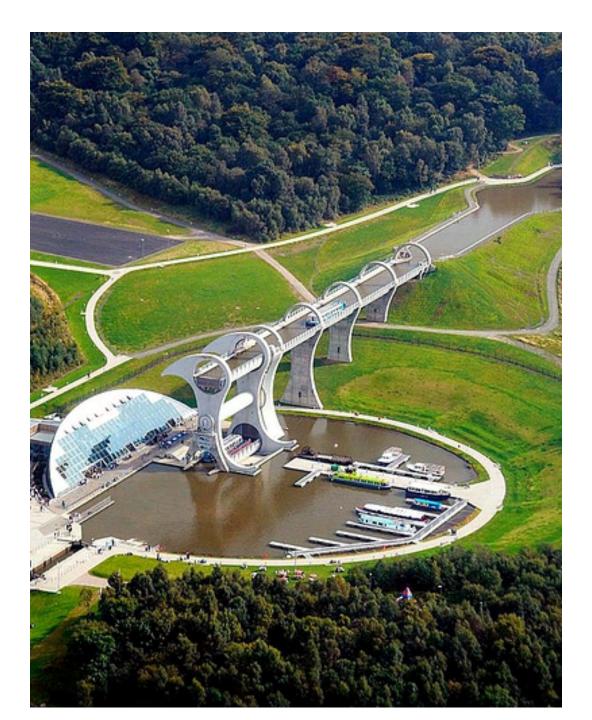
- The first to have the "idea" of density
- Never actually defined it as mass over volume
  - stated that an object with more mass per volume had a greater <u>weight</u>
- The famous problem: The King's Crown
  - King gave a goldsmith a brick of gold and asked him to make a crown
  - The King suspected that the crown was not made entirely of gold
  - He asked Archimedes to determine the amount of gold in the crown without altering it

- Archimedes was a little perplexed and took a bath to relax and ponder the problem
- When he got in, he noticed the water level rose
   Came to the conclusion that the volume of water displaced was equal to the volume of his body
- It dawned on him that he could do the same thing with the crown to determine the amount of gold in it
  - This is apparently when he jumped out of the tub and ran naked in the streets yelling "Eureka!"

- He took two equal weights of gold and silver and compared the weights when they were submerged in water
- Then he compared the weights of the King's crown and a crown made of pure silver having the same dimensions, when they were submerged in water
- By comparing these results, he determined that the King's crown was <u>not</u> made of solid gold

## Archimedes' Paradox...

- "...an object can float in water that has less volume than the object itself, if its average density is less than that of water."
  - There must be enough water to prevent the object from touching the bottom or sides




## Archimedes' Paradox

- This is the principle behind massive ships being able to float
  - The ship is made of steel, but contains mostly air therefore the overall density of the ship is less than water
- If the hull is punctured (Titanic) water rushes in, which pushes the air out of the ship
  - As a result, the overall density becomes greater than water and the ship sinks

## Archimedes' Paradox...

- An application of Archimedes' Paradox can be found in Scotland: The Falkirk Wheel
- It connects the Clyde Canal with the Union Canal which differ in height by 24 meters
- It consists of two main "tubs", one on either canal
  - The boats enter the tubs which lock in the water so the boats remain floating
  - The Falkirk Wheel rotates as the tubs stay horizontal moving the boat from the top of the lock to the bottom and vice versa
  - The whole process takes 15 minutes





#### Archimedes' Paradox...

 From this paradox, we have learned that liquids or gases which are more dense sink below liquids or gases which are less dense




- Killed in 212 BC during Second Punic War by a Roman Soldier
- Working on a math problem involving circles and didn't want to be disturbed
- Soldier killed him when he refused to go with him



#### Archimedes Tomb

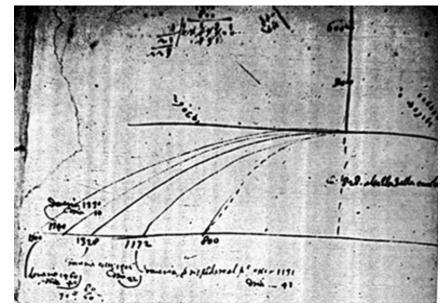
- Tomb had inscription of his favorite math proof (a sphere inside a cylinder) and verses
- Discovered by Marcus Tullius Cicero in 75 BC





## Evangelista Torricelli

- Born in Faenza, Italy on October 15, 1608.
- Eldest of three boys
- Sent to his uncle Brother Jacopo at an early age for proper education
- Went to a Jesuit College in 1624 for two years
- Taught by Benedetto Castelli
  and became his secretary




Goito Chioggia Gorgo. MapPo Gulf of Venice Mantua PADUA Rovigo Vrsar Rovinj 459 Case | Selva Mirandola\_ Roggio Rusco Ocaro Foci del Po BRIJUN Codigoro Palata Pepoli San Giovanni Riolo<sup>®</sup> Budrie Comacchio Adriatic Sea Sassuolo oBologna Argenta Mediterranean Sea | 44º 30' Ravenna Lugo Cervia \_Vergato aenza Faidello/ Fognano<sup>°</sup> Forli<sup>O</sup> Cesena Rimini Castigliane dei Repoli: FIRENZE Predappio 44° Boveglio Istora o Vicchio Corniolo San Marino Ξ. Pesaro Novafeltria Galleno: Florence E Senigallia Falera Lunano Cetica Poppi mpoli Ancona Polverigi ©2006 Microsoft Corp.

## Evangelista Torricelli

- Wrote to Galileo in 1632 in the absence of Castelli and informed him of his own achievements in math and that he agreed with the Copernican and Galilean theories
- However, with Galileo's trial in 1633, Torricelli decided to change his focus

 From 1633 to 1641
 Torricelli finished "De motu gravium" which was a continuation on
 Galileo's work on the parabolic path of projectiles



## Torricelli...

- Castelli read it and suggested to Galileo that Torricelli become his assistant
- Torricelli went to live with Galileo in Arcetri on October 10<sup>th</sup> 1641, just 3 months before Galileo died
- Grand Duke Ferdinando II de'Medici chose Torricelli to take over Galileo's position as grand-ducal mathematician and Professor of Mathematics at the University of Pisa
- He stayed at the ducal palace in Florence until his death on October 25<sup>th</sup>, 1647 after catching typhoid fever

## The University of Pisa



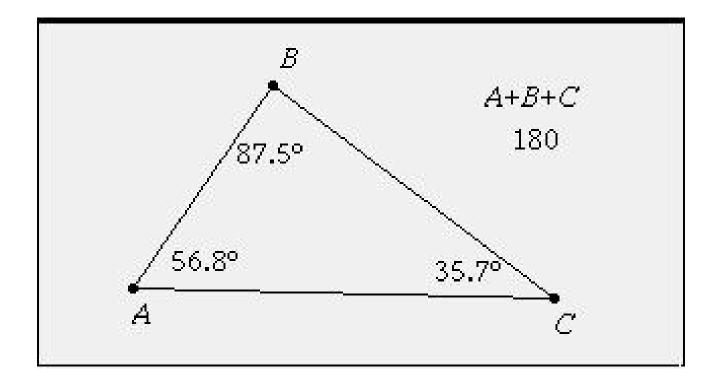
## Torricelli...

- In 1643, Torricelli invented the first barometer
  - A barometer is a device used to measure the pressure of the atmosphere
- He filled a 1 meter long tube with mercury and quickly inverted it into a bowl also filled with mercury
  - The mercury in the tube decreased by ~24cm
  - He observed that the decrease of mercury fluctuated slightly but did not understand why

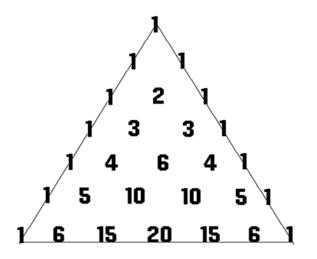
## Torricelli...

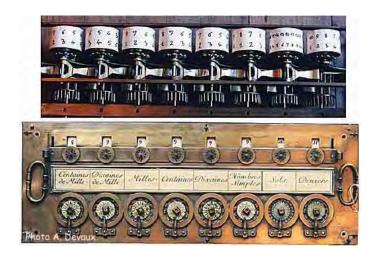
- He concluded that the height of the mercury in the tube was caused by some force at the surface of the earth
- He was unable to describe this force in detail

"We live submerged at the bottom of an ocean of elementary air, which is known by incontestable experiments to have weight".


## Blaise Pascal

- Born on June 19, 1623 in Clermont-Ferrand, France
- Lost his mother at the age of three and lived with his father and 2 sisters
- Educated by his father, a judge interested in math and science




• When he was 12, he wrote out a proof on his wall in coal stating that the sum of all the angles in a triangle is equal to the sum of two right angles



- At 18, his father became a tax commissioner and he built the first calculator to help his father add and subtract all of the taxes owed and paid
- He also invented Pascal's Triangle and Pascal's Theorem





- In regards to Torricelli's barometer, Pascal was baffled by the unexplainable force described by Torricelli and set out to define it
- He predicted that the mercury would decrease at higher altitudes
  - Proved this in 1648 when he went to the top of Puy de Dome in France
  - He concluded that this was due to a change in pressure which acts uniformly in all directions and decreases with altitude
  - He defined this as Atmospheric Pressure
  - The pascal (Pa) was named in his honor

#### Pressure Units

|        | <u>pascal</u><br>(Pa)        | <mark>bar</mark><br>(bar)                         | <u>atmosphere</u><br>(atm) | <u>torr</u><br>(Torr)        | pound-<br>force per<br>square<br>inch<br>(psi) |
|--------|------------------------------|---------------------------------------------------|----------------------------|------------------------------|------------------------------------------------|
| 1 Pa   | ≡ 1 <u>N</u> /m <sup>2</sup> | 10 <sup>-5</sup>                                  | $9.8692 \times 10^{-6}$    | $7.5006 \times 10^{-3}$      | 145.04×10 <sup>-6</sup>                        |
| 1 bar  | 100,000                      | $\equiv 10^6  \underline{\text{dyn}}/\text{cm}^2$ | 0.98692                    | 750.06                       | 14.504                                         |
| 1 atm  | 101,325                      | 1.01325                                           | ≡ 1 <u>atm</u>             | 760                          | 14.696                                         |
| 1 torr | 133.322                      | 1.3332×10 <sup>−3</sup>                           | 1.3158×10 <sup>-3</sup>    | ≡ 1 Torr;<br>≈ 1 <u>mmHg</u> | 19.337×10 <sup>-3</sup>                        |

- Became ill in 1659 but continued to write scientific papers
- Died on August 18, 1662 in Paris from tuberculosis and stomach cancer
- He was buried in St.
  Étienne du Mont, behind the Pantheon





## Robert Boyle

- Born on January 25, 1627 in Lismore, Ireland at the Lismore Castle
- 14<sup>th</sup> child and 7<sup>th</sup> son of father Sir Richard Boyle



Boyle...

- When he was 3 he almost drowned when the horse he was riding on fell into a fastmoving stream
- At 7 years old, he was nearly crushed when his bedroom ceiling collapsed
- At 8, his mother passed away and he was sent to Eton College in England
- When he was 11, he was sent on a Grand Tour to France, Switzerland and Italy

Boyle...

- While in Florence, Italy, Galileo passed away which greatly influenced Boyle
- Returned to England at age 18 and dedicated his life to scientific studies
- Joined the "Invisible College" which became the Royal Society of London



## Boyle...

 In 1662, Boyle published what is known as "Boyle's Law", which states:

> "For a fixed amount of gas kept at a fixed temperature, P and V are inversely proportional (while one increases, the other decreases)."

• The mathematical equation is written as:

Where P is the pressure, V is the volume and k is a constant describing the system

## Boyle...

- Boyle's Law can also be used to predict the change in volume or pressure of a closed system where the temperature remains constant
- This can be expressed as follows

$$\mathbf{P}_1 \mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_2$$

- With the help of this we can predict the volume of a gas or liquid with a change in pressure
- Example: a cylinder compresses a gas to ½ times the original volume, so the pressure goes up by a factor of 2

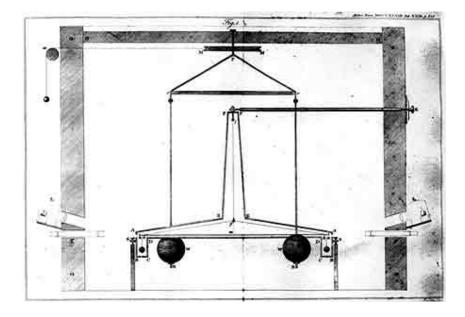
## Boyle...

- Boyle led a very secluded and lonely life
- In 1668 he went to live with his sister, Lady Ranelagh
- He was offered to be the President of the Royal Society in 1680 but declined because of his strong Christian beliefs
- His health deteriorated from 1689 until his death on December 30, 1691 in London, England
- He was buried at St. Martin-in-the-Fields



## Henry Cavendish

- Born October 10, 1731 in Nice, France
- Mother died in 1733 after giving birth to his brother, Frederick
- Very wealthy family
- At 11 years old, became student at the Dr. Newcome's School in Hackney




- In 1749 went to the University of Cambridge but left four years later without graduating
- Toured Europe for a few years with his brother then lived in Soho, London with his father until his father's death in 1783
- Cavendish became a millionaire through inheritances when he was 40 years old

- Very quiet and isolated individual
- Painfully shy of women:
  - Communicated with his housekeepers through notes and had a back stairwell put in to avoid meeting them
- Only socializing was through the Royal Society where he dined with the other members prior to the weekly meetings

- Because of shyness, he avoided publishing his work
- James Clerk Maxwell in 19<sup>th</sup> century read his papers and came upon discoveries Cavendish made that others had been given credit for like:
  - Ohm's Law
  - Richter's Law of Reciprocal Proportions
  - Charles's Law of Gases

- In 1798, he was the first to successfully measure the density of Earth.
- He used a complicating device which consisted of a torsion balance which measured the gravitational attraction between two large lead balls.



- These measurements were so precise, that even the slightest air movement would offset the results. He therefore constructed a 10'x10' box with 2' thick walls around the apparatus. He made his observations by looking through two small holes in the side.
- He concluded that the density of earth was 5.48 times that of water.

- Another discovery by Cavendish was that of Hydrogen. (He called it "inflammable air")
- He was able to produce and isolate hydrogen so that he may further study it.
- Not only did he discover that hydrogen was 11 times lighter than air, he also discovered that carbon dioxide was 1.47 times heavier than air.
- We now understand that some gases are heavier (denser) than others.



- Died on February 24, 1810 after becoming sick
- Buried in Derby Cathedral in the United Kingdom



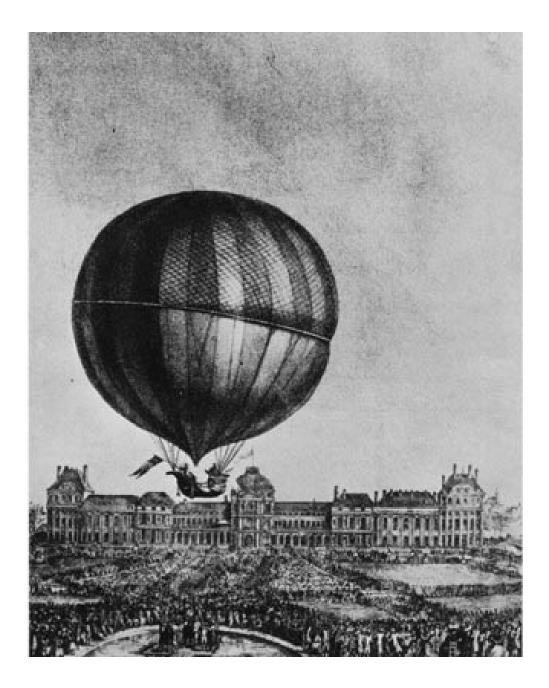


# Jacques Charles

- Born on November 12, 1746 in Beaugency-sur-Loire, France
- He received an education as a young boy, yet it didn't include much math and science
- He worked at the Bureau of Finances in Paris during his late teens
- Changed his focus to science after hearing Benjamin Franklin speak in Paris



## Charles...


 In 1787, he came up with Charles's Law which relates temperature and volume when there is a constant pressure:

$$V_1/T_1 = V_2/T_2$$

 When the pressure remains constant, the volume of a gas is directly proportional to the absolute temperature

## Charles...

- He was the first person to use Hydrogen in an air balloon
- On August 27, 1783 he filled a balloon with hydrogen which sailed out of Paris
- It landed in the country side, and was immediately distroyed by terrified civilians.
- On December 1, 1783 he flew his newly constructed hydrogen balloon with Ainé Roberts in the first manned flight
- This happened only 10 days after the Montgolfier brothers' first manned hot-air balloon flight



#### Charles...

- On November 20, 1795 he was admitted to the Académie des Sciences
- In 1816, he became a physics proffessor at the Conservatoire des Arts et Métiers
- Jacques Charles married Julie-Francoise Bouchard des Herettes, and is not believed to have had any children
- He died on April 7, 1823 in Paris, France

# Joseph Louis Gay-Lussac

- Born on December 6, 1778 in the village of Saint-Léonard-de-Noblat in France
- Was educated at home until 1794 when he attended the École Polytechnique in Paris
- Was a professor in chemistry and physics from 1808 to 1832



Gay-Lussac...

- The relationship between temperature and pressure was described by Joseph Louis Gay-Lussac in 1802
- He claimed that with an increase in temperature, identical volumes of gases expand uniformly
- Even though Jacques Charles described this property 15 years earlier, he neglected to publish his results
- This is basically Charles's Law, just rearranged



## Gay-Lussac...

- His biggest accomplishment was in 1804 when he and Jean-Baptiste Biot flew to 23,000 feet in a hydrogen filled balloon to take samples of gases in the atmosphere
- It took another 50 years for the next person to accomplish the same feat



Gay-Lussac...

- He died on May 9, 1850 in Paris, France
- He is buried at the Père Lachaise Cemetery in Paris



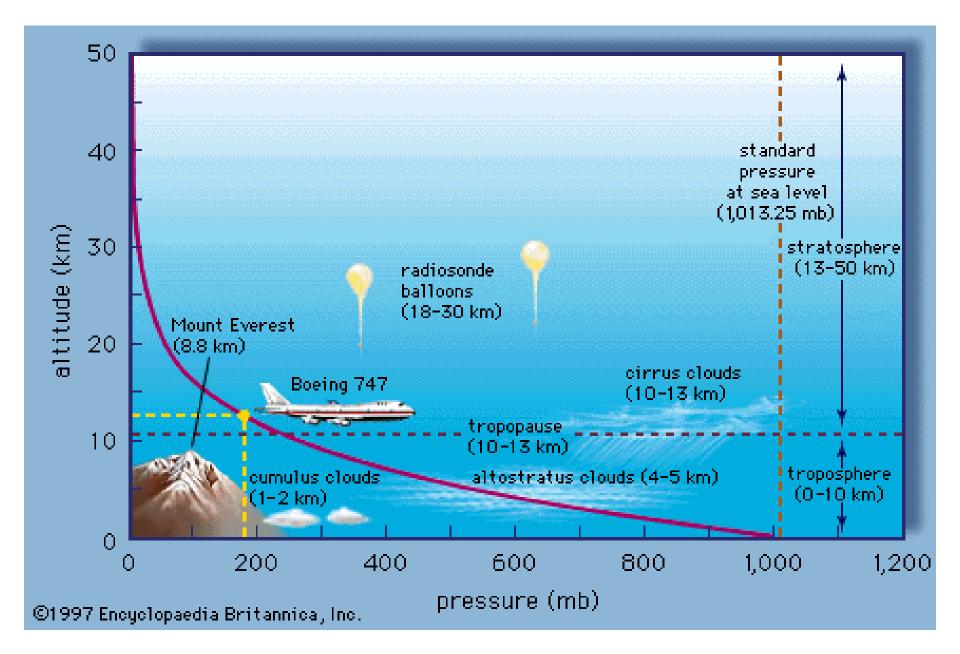
# **Everyday Applications**

 Thanks to the discoveries of these famous scientists, our standard of living has greatly improved:

- Blood pressure
- Weather predictions (Tornadoes in particular)
- Airplane travel

# Applications...

- Blood pressure:
  - The first time a human's blood pressure was measured was in 1847 which involved inserting catheters directly into the artery – not very appropriate for clinical use
  - Today we use more humane and practical methods which allow blood pressure to be measured without any insertion into the artery
  - As a result, serious health problems can be detected early on and addressed


# Applications...

- Tornadoes:
  - Advancements in detecting atmospheric pressure changes has permitted meteorologists to predict different weather patterns, like tornadoes
  - They are able to give people an advanced notice when a tornado is approaching so that they may find shelter
  - As a result, more lives are saved



# Applications...

- Airplane Travel:
  - As we know, pressure decreases with altitude, therefore airplane cabins must be pressurized in order to fly
  - The pressure inside the cabin must be similar to the pressure at the surface of the earth which relates to the amount of oxygen in the air
  - If it weren't pressurized, there wouldn't be enough oxygen for us to breath and we would lose consciousness



## **References:**

- <u>www.geocites.com</u>
- www.wikipedia.org
- www-groups.des.st-and.ac.uk/~history
- www.chemistry.mtu.edu
- <u>http://members.ozemail.com.au</u>
- <u>www.sensorland.com</u>
- http://mattson.creighton.edu/
- www-gap.dcs.st-and.ac.uk/~history
- Singer, C. A Short History of Science
- Mason, F. A History of the Sciences
- Scott, A. The Invention of the Balloon and the Birth of Modern Chemistry
- Krane, K. Modern Physics
- Cutnell, J & Johnson, K. *Physics 7th Edition*