HISTORY OF SCIENCE II CALENDAR

DATE	NOTES	HISTORICAL CONTEXTS
DAY 0 Jan. 5	Course Introduction. For <i>historical contexts</i> refer to syllabus.	Classroom activities in preparation for the course. Syllabus and Historical Contexts discussed.
	for	
	DAY 1 and DAY 2	
DAY 1	PART A:	
Jan. 12	The Beginnings of Modern Chemistry and	•The law of definite proportions
	Physics (From 1900 to obout 1960)	•Dalton's atomic theory
	(FIOIII 1800 to about 1860)	• Avogadro's Hypothesis
		•Dawy's hypothesis of 'combining volumes of
	Early Chemistry and	gases'.
	Newton's experiment with a	 Proust's conjecture about atomic structure
	prism Young's interference of light	CONTEXT 2: Early Modern Physics
	experiment	L Light
	Faraday's electrolysis experiments	•William Herschel and the discovery infrared radiation
		 Young's interference experiment of light
	ASSIGNMENT II: 1	•Fizeau's experiment to find the speed of light.
	Contexts 1, 2,	II Heat work electricity and the
	and 3	Conservation of Energy Principle
		•The heat experiments of Rumford
		Hemholtz: the Law of Conservation of Energy
		•Faraday's electrolysis experiments: the
		Faladay constant (F)
		equivalent of heat and electricity
		•The laws of thermodynamics. Helmholtz and
		Lord Kelvin

Jan. 19	ASSIGNMENT II:1 cont	CONTEXT 3: Microphysics •Brownian motion •The kinetic molecular theory of gases •The determination of Lohschmidt's number Special Presentation: •The Confrontation Between Modern Physics and •Geology and Biology •Charles Lyell: Principles of Geology •Darwin: Origin of Species •The Bible and the age of the earth •The age-of-the-earth debate
	Context 4	CONTEXT 4: Spectroscopy and Cathode Ray Physics
DAY 3 Jan. 26	PART B: Prelude to the "New Physics": From about 1860 - to about 1910: •Hand in Assignment 1	 Spectroscopy Early flame tests in chemistry Kirchhoff's spectroscopy The Doppler effect The discovery of helium <u>II. Cathode Ray Physics</u> The history of the cathode ray tube The physics of the radiometer. The discovery of x-rays Special Presentation: Mendeleev's periodic table of the elements

DAY 4		CONTEXT 5: Black Body Radiation and Planck's Quantum Theory
Febr. 2	ASSIGNMENTT II: 3 Contexts 5 and 6 •Hand in Assignment 2.	 Stephan's law of radiation: empirical Boltzmann's solution: theoretical Wien's law of displacement Raleigh- Jean's law of radiation Planck and the idea of the quantum CONTEXT 6: Surprising New Discoveries I. <u>Anticipating the "New Physics"</u> The Michelson and Morley experiment Hertz and the photoelectric effect Maxwell's theoretical model of E-M radiation Hertz's experiments with electromagnetic radiation (radio waves).
		 <u>II. The last decade of the 19th century:</u> The discovery of x-rays The discovery of radioactivity The discovery of the electron: the charge to mass ratio (e / m) Planck and the beginning of quantum theory
DAY 5		Midterm test: 1 hour. (15%)
Febr. 9	ASSIGNMENT II: 4 Contexts 7, 8 and 9	CONTEXT 7: <i>Annus Mirabilis:</i> Einstein's Three Papers of 1905: Special Presentation:
	Hand in Assignment 3	Brownian motion, The Photoelectric Effect, and The Special Theory of Relativity
		2

DAY 6 Febr. 23	Part C: The Beginnings of the "New Physics". From about 1913 to 1924. ASSIGNMENT II:4 cont •Sign up for CASE STUDIES (Assignment IV) Note: Case Studies commitments must be established by DAY 7!	 CONTEXT 8: The Background to Bohr's Model of the Hydrogen Atom The determination of Avogadro's number (A₀) The relationship between A₀, electron charge, e and Faraday's constant, F. Rutherford's gold foil experiment Rutherford's 'mouse trap' to detect alpha particles Spectroscopy before Bohr: The Balmer formula for the hydrogen spectrum Millikan's Oil drop experiment: The charge of the electron
	Remember: <u>Three</u> students per Case Study. However, there may be one case study with two students necessary. But never four!	 Special Presentation: Bohr's atomic model of the hydrogen atom. CONTEXT 9: Activities After the Bohr Model Four important experiments in the second four important experiments in the second decade of the 20th century The Franck-Herz experiment Moseley's experiments Bragg's diffraction of x-rays The discovery of isotopes II: Theoretical work to improve the Bohr model of the atom Sommerfeld's model of the atom Explaining the Zeeman effect Einstein predicts the LASER Special Presentation: Bohr revises the periodic table of the elements

DAY 7 March 1.	PART D: The New Quantum Mechanics ASSIGNMENT II:5 Context 10 and 11 •Hand in assignment 4. •Hand in CASE STUDY PROPOSAL	CONTEXT 10: Using Quantum Mechanics to Explain Key Experiments • The Compton effect • The Stern-Gerlach experiment • Thomson and Davisson experiment : Electron diffraction in crystals CONTEXT 11: A New Generation of Physicists Create Quantum Mechanics. • De Broglie's matter-wave theory • Heisenberg's quantum mechanics • Schroedinger's quantum mechanics • Schroedinger's quantum mechanics • Pauli's exclusion principle • Heisenberg's uncertainty principle • Fermi and his theory of beta decay: neutrinos • Dirac's argument for antiparticles • Beta decay
DAY 8 Marc	ASSIGNMENT II: 5 cont	CONTEXT 12 An expected and an unexpected discovery • The discovery of the neutron • The discovery of the antiproton Special Presentation • The birth of nuclear physics: • The four forces of nature Special Presentation • The electron theory of crystals • The invention of the transistor Special Presentation:

	•The modern periodic table

DAY 9 March 15	.●Hand in assignment 5.	BOOK REPORT PRESENTATIONS (10%) 10 MINUTES PER BOOK REPORT CASE STUDIES PREPARATION
DAY 10 March 22	●Hand in book report	CASE STUDIES PRESENTATIONS (25%) (30 MINUTES PER PRESENTATION)
DAY 11 March 29		CASE STUDIES PRESENTATIONS FINAL EXAM (25%) FINAL EXAM 2 HOURS
	 .	

CONTEXT 1: Early Modern Chemistry

- •The law of definite proportions
- Dalton's atomic theory
- Avogadro's Hypothesis
- •Davy's hypothesis of 'combining volumes of gases'.
- Proust's conjecture about atomic structure

CONTEXT 2: Early Modern Physics

I. Light

- •William Herschel and the discovery infrared radiation
- Young's interference experiment of light
- •Fizeau's experiment to find the speed of light.

II. Heat, work, electricity and the Conservation of Energy Principle
The heat experiments of Rumford
Hemholtz: the Law of Conservation of Energy
Faraday's electrolysis experiments: the Faraday constant (F)
Joule's experiments: The mechanical equivalent of

The laws of thermodynamics: Helmholtz and Lord Kelvin

	ASSIGNMENT II: 2 Context 4	CONTEXT 4: Spectroscopy and Cathode Ray Physics
DAY 3 Jan. 26	PART B: Prelude to the "New Physics": From about 1860 - to about 1910:	<u>I. Spectroscopy</u> •Early flame tests in chemistry •Kirchhoff's spectroscopy •The Doppler effect •The discovery of helium
	 Hand in Assignment by next Wednesday 	 <u>II. Cathode Ray Physics</u> • The history of the cathode ray tube • The physics of the radiometer. • The discovery of x-rays Special Presentation: • Mendeleev's periodic table of the elements