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dynamics of jumping based on the principles of Newtonian 
mechanics.

Data acquisition
I discovered that the pause button on the remote control 

of my external drive enabled me to measure motion at a time 
interval of about 1/50 second.

For the kinematics and dynamics of the clearing of the 
fence, we need to know:
1. 	The height of the fence.
	 The height was 1.60 m, the maximum height per- 

mitted for the event.
2. The speed of the horse just before liftoff.
	 An investigation of the kinematics of horse  

jumping1 reports an average approach speed of  
3.7 m/s. I assumed a speed of 4.0 m/s for our case.

3. The angle of elevation of the horse just before takeoff.
	 The average angle of elevation for the three cases  in Ref. 1 

was about 40-45o.1 For our case this angle was easily 	
found by measurement to be about 40o. In Fig. 2 the 	
angle of Derly’s body is indeed about 40o.

4. The time of contact between the hind hooves that is 
needed for push-off.

	 This time was estimated by counting the number of  
pauses required for the hind hooves to produce liftoff,  
and was found to be about 0.20 s. This measurement  
is crucial for determining the forces involved.

5. The time of flight of the horse and rider.
	 Again, using the pause button, I found that the time  

it took for the horse to jump the 1.60-m fence was  
about 0.70 s. This value will also be confirmed  
by the kinematic calculations.

6. The total distance from the contact point of takeoff and 
the landing on the front hooves.

	 This distance was estimated to be about 4.8 m. This  
will later be confirmed by kinematic calculations. In  
addition, I needed to know the mass and the height 	
of the horse, as well as the mass of the rider. Derly’s  
mass  is about 500 kg and her height is given as  
17 hands (1.73 m). With the mass of Eric and the  
saddle (70 kg), the combined mass of the horse and  
rider system is about 570 kg.

Description of equestrian jumping
Equestrian jumping involves four phases described in a 

comprehensive article by Dr. Sheila Schills, a well-known 
expert in equine rehabilitation.3 They are the approach, the 
takeoff, the flight, and the landing. They are illustrated in  
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This article discusses the kinematics and dynamics 
of equestrian show jumping. For some time I have 
attended a series of show jumping events at Spruce 

Meadows, an international equestrian center near Calgary, 
Alberta, often referred to as the “Wimbledon of equestrian 
jumping.” I have always had a desire to write an article such as 
this one, but when I searched the Internet for information and 
looked at YouTube presentations, I could only find simplistic 
references to Newton’s laws and the conservation of mechani-
cal energy principle. Nowhere could I find detailed calcula-
tions. On the other hand, there were several biomechanical 
articles with empirical reports of the results of kinetic and 
dynamic investigations of show jumping using high-speed 
digital cameras and force plates. They summarize their results 
in tables that give information about the motion of a horse 
jumping over high fences (1.40 m) and the magnitudes of the 
forces encountered when landing. However, they do not de-
scribe the physics of these results.

In September of 2012 I went to see some of the jumping 
events at Spruce Meadows. I wanted to see if it was possible to 
establish a context, imbedded in a good storyline, that would 
interest many students. I was particularly drawn to the per-
formance of the Canadian equestrian jumper Eric Lamaze, 
former world number one, who was attempting a comeback 
after his Olympic gold medal horse Hickstead died suddenly 
in November of 2011.

My aim was to obtain enough data to describe the kine-
matics and dynamics of jumping over a high fence and a wide 
water barrier using basic physics and elementary mathemat-
ics suitable for high school physics students. However, no ki-
nematic or dynamic information for the jumping at this event 
was available. I considered taking a high-speed camera and 
a Doppler shift apparatus to Calgary this spring to measure 
speeds. But soon I discovered that acquiring the necessary 
apparatus as well as the permission to be granted access to a 
thoroughbred horse and a rider was not a realistic proposi-
tion.

Luckily we recorded some of the equestrian competitions 
on our TV external drive. I soon realized that I could study 
the motion of Eric Lamaze and his new young mare, Derly, in 
a Grand Prix event in which he and his new horse placed sec-
ond. This event, the CN Grand Prix of June 12, 2012, can be 
found on YouTube and the reader is encouraged to study the 
motion of Eric and his horse.

Furthermore, two articles were very helpful in providing 
additional data to exploit in my study. These data were for 
jumping heights of 1.40 m. This together with the results I 
obtained has enabled me to provide explanations suitable for 
introductory physics students for both the kinematics and 



The Physics Teacher ◆ Vol. 52, April 2014                                    203

abort the normal forward movement of the 
canter. As the weight moves backward, the 
hind legs compress or coil. With the maxi-
mum amount of flexion in the hind joints, 
the horse can then create the maximum 
push against the ground to propel her up 
and forward over the jump. The horse can 
have the most effective takeoff when the 
hip joint is placed vertically above the hoof.

Flight
The hind legs reach maximum extension after they leave the 
ground and the front legs are curled tightest against the body. 
The knees lift and bend to curl the legs up, the tighter the 
better, so the chance of hitting the fence by the front legs is 
reduced. To bend the knees and lift the forehand, the scapula 
(shoulder) rotates upward and forward. During the flight the 
CM follows an approximate parabolic trajectory.

Landing
To slow the forward momentum so that the force of impact 
is reduced, the horse will swing the neck and head up as the 
forelegs reach toward the ground. The non-leading front leg 
lands first. When the leading front leg lands, both legs push 
against the ground in a downward and backward direction. 
The hindquarters rotate underneath the trunk and reach 
toward the ground as the forehand moves forward and out of 
the way of the hindquarters.

Analysis of jumping
Equestrian jumping involves clearing hurdles (and water 

barriers) as the beautiful photograph shown in Fig. 2 of Derly 
and Eric Lamaze illustrate. It can be likened to hurdle jump-
ing and the long jump of human athletics. Accordingly, they 
are analyzed sequentially: first the high fence followed by the 
water barrier jump.
 
High fence jump
The particular jump we choose for analysis here is one of the 
1.60-m fences that was used in the Grand Prix event at Spruce 
Meadows. Derly approached this high fence with a speed of
about 6.0 m/s. The speed was reduced by a shorter stride to 
about 4.0 m/s just before anchoring the hind legs in posi-
tion. We assume that the horizontal speed of 4.0 m/s does not 
change significantly during the 0.20-s push-off period.

The front legs were lifted and the hind legs stopped mov-
ing for about 0.20 s during what is called a “stance phase.” 
The front legs are coiled so that the body of the horse with 
reference to the horizontal can be as high as 45o, just before 
push-off. The hind legs uncoil, and at the point of leaving the 
ground, the angle for the trajectory now is about 40o. During 
this stance phase, the CM of the horse-rider system moves 
about 0.80 m (4.030.20). 

The CM of Derly at the moment of takeoff is estimated to 
be about 20 cm along the line of Derly’s body, in front of Eric’s 

Fig. 1 as a sequence of seven sketches labeled (a) through (g). 
Approach is illustrated in (a) and (b), takeoff in (c) and (d), 
flight in (e), and landing in (f) and (g). They can be summa-
rized as follows:

Approach
The horse must get to the fence at an even and steady gait 
(usually a canter motion) so that she can concentrate on 
the best spot to take off for the jump. (See Fig. 1.) The horse 
reaches forward and down with her neck to lower the front 
legs and her CM (center of mass).The front legs are propped 
or strutted out in front of the body. This relatively sudden 
braking action allows momentum to carry the hind legs fur-
ther under the body of the horse than would be otherwise 
possible.

Takeoff
As the horse finishes the last complete stride before the 
jump, she will begin to shift the weight backward by rais-
ing the head, shortening the neck, and lifting the shoulders.
The horse’s neck continues to shorten to assist in moving the 
weight backward. This shortening of the neck also helps to 

Fig. 1. Part 1. The approach and the takeoff.

Fig. 1. Part 2. The flight and the landing.

Fig. 2. Eric Lamaze and Derly jumping a 1.60-m fence. The 
takeoff angle is almost exactly 40o from the horizontal and 
the distance from the fence to the hooves about 2.4 m. The 
center of mass of the pair is indicated by the blue dot on 
the horse. (Photo courtesy of Franz Venhaus)
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so the height reached by CM is

       h = (3.4)2 /20 = 0.58 m.	

The total height from the ground to the center of gravity, as-
suming the initial CM is approximately the same as the fence 
height, is 1.60 + 0.58 = 2.18 m.

The horizontal range of the CM is given by 

RCM = 2vx t.  					              (4)

Thus RCM = 4.030.7 = 2.8 m. The tangential velocity v at the 
point of liftoff is
      
      v = (vx

2 + vy
2 )1/2

.				            (5)

Thus v = (4.02 + 3.42 )1/2 = 5.2 m/s.

Remember that the horizontal distance from the spot 
where the hind leg hooves take off to the CM, that is, the start 
of the trajectory, is about 1 m. If the jump is perfectly sym-
metrical (and it seldom is), the total range R is given by: R = 
2.8 + 2.0 = 4.8 m.

It should be noted that the location of the CM of Derly 
does change somewhat during the flight because the horse’s 
body configuration changes due to the movement of the neck 
and the leg during the flight. Therefore, the trajectory is only 
an approximate parabola, as indicated in Fig. 4.

The dynamics of the jump
The motion during the push-off stage that takes about  

0.20 s is fairly complicated. However, the sketches of Fig. 1 
suggest that the direction of the force produced by the hind 
legs varies by only a small angle (say 15o) about the vertical. 
However, its line of action is behind the CM by a distance d, 
which advances significantly during this short time of con-
tact. At the start of the push, Derly’s body is at an elevation 
angle of about 45o [see Figs. 1(c) and 1(d)]. As the hind legs 
are pushing forward (remember the hooves are stationary 
during this brief period), the body moves about 0.80 m  
(4.0 m/s30.20 s) forward. The product d3F, variable in itself 
during the push-off duration of 0.20 s, is a torque that causes 
Derly to rotate clockwise after the initial counterclockwise 
motion produced by the forelegs push-off prior to the jump. 
When the hooves leave the ground, the CM has moved about 
0.80 m horizontally and Derly is moving with an initial verti-
cal velocity component of 3.4 m/s and a constant horizontal 
velocity component of 4.0 m/s, essentially along a parabolic 
trajectory. When contact with the ground has ended, the 
direction of the body of the horse is about 40o with the hori-
zontal.

We assume that for the liftoff most of the force acts in the 
vertical direction and ignore the horizontal force. The aver-
age thrust force during the 0.20-s push-off period can be ob-
tained by using the relationship between impulse and change 

right foot. This was done by scaling, that is by comparing dis-
tances to the height of the 1.60 bar, using the photo of Eric La-
maze and Derly shown in Fig. 2. Knowing the angle at takeoff 
and the horizontal velocity, we can easily determine the in-
stantaneous vertical velocity at the beginning, the height, the 
range, and time of flight for the trajectory.

The kinematics of the jump
Derly pushes off when the angle to the horizontal is about 

40o and the horse-rider system’s CM at this moment happens 
to be at about the same height as that of the fence. The hori-
zontal velocity is constant at about 4.0 m/s. Where relevant in 
calculations, it is appropriate (given the 5% accuracy we are 
working with) to take g, the acceleration of gravity, to be 10 
m/s2. The vertical velocity at the moment of liftoff is related 
to the horizontal speed component

vy = vx tan 40o.					            (1)

Therefore vy = 4.0 tan 40o = 3.4 m/s and the time t to reach 
height h is obtained from

vy = gt					              (2)
or 
       t = vy /g = 3.4/10 = 0.34 s.

The total time for the trajectory is 2t, i.e., ~0.7 s as expected.
Applying the equation of uniformly accelerated motion in the 
vertical direction, we have

     vy
2 = 2 gh,					              (3)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Parabolavy = 3.4 m/s

V = 5.2 m/s

40o
Vx = 4.0 m/s

vx = 4.0 m/s

5.2 m/s

Height = 0.58 m

Range = 2.8 m
Time of �ight = 0.68 s

Fig. 3. The motion of the CM of horse and rider over the 1.60-m 
fence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The kinematics of jumping a 1.60-m fence is represented 
in this example of an ideal jump. Red arrows indicate launching 
point and landing point of hooves and the CM motion is given by 
the blue arc.
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the time of the trajectory does not change with the push-off 
distance (see Fig. 5). This is a well-known discrepant event 
and always astonishes students when they see a demonstra-
tion, using balls rolling off a table at different speeds.

It is useful to see how small changes to this description 
affect the scenario. For example, if the distance of the CM 
on takeoff is only 0.50 m closer to the fence, then the angle 
at takeoff would be over 50o. On the other hand, if the horse 
jumps from a distance 1.0 m behind the optimum distance of 
about 2.4 m, the angle would be about 30o, but the horizontal 
velocity would have to be 7.2 m/s. Since the horse generally 
slows down by about 2 m/s just before the takeoff stance, the 
approach velocity would have to be at least 9 m/s. This veloc-
ity usually requires galloping and results in lessening the abil-
ity of the horse to assume a symmetric stance for takeoff.

In addition, the forces acting on the front legs would be a 
little larger, because the horse typically reduces the landing 
speed to about 3 m/s. That means that there is a greater hori-
zontal force than in the optimal case: Fx = m Δv/Δt =  
570(7.2 – 3)/0.20 = 12,000 N . The vertical force is, as for the 
hind legs, 15,400 N. 
The total force acting on the front legs then would be:

F = F = (Fx
2 + Fy

2 )1/2 = (12,0002 + 15,4002 )1/2 = 20,000 N.

This is a considerably larger force acting on the front legs 
than when jumping the shorter trajectory. Therefore, if Eric 
chooses the longer jump to gain advantage in time, he risks 
his horse having to encounter greater retarding forces, espe-
cially on landing.

Finally, it should be mentioned that just as in the case of 
the takeoff force acting behind the CM of the horse, produc-
ing a clockwise rotation, the contact force produced by the 
front legs on landing acts in front of the CM and produces a 
counterclockwise rotation. Indeed, if the angle of descent is 
large enough, the horse will rotate clockwise, which results in 
a dangerous summersault, with the potential of severe injury 
to both rider and horse.

of momentum:

F Δt = m Δv. 			                           	         (6)

Therefore 
      
     F = m Δv/Δt.				                               (7)

The total vertical force Fy acting during the impulsive action 
to propel the CM of the horse to the elevation h is:

Fy = mg + m Δv/Δt				             (8) 

Δv/Δt  = 3.4/0.20 = 17 m/s2.

Therefore Fy = m(g + Δv/Δt) = 570(10 + 17) = 15,400 N = 
15.4 kN.

This is a large average force that acts during the 0.20-s 
contact. The force varies during this short time of 0.20 s and 
reaches a peak of perhaps 19 kN, at about 0.10 s. Therefore, 
each leg must be able to support a force of about 7700 N in a 
symmetric case. The total energy supplied by the hind legs for 
the jump is given by the maximum gravitational energy the 
CM of the horse and rider assumed during the flight:
         
     E = mgh.					            (9)

Therefore the energy supplied by the jump is  E = 5703 
1030.58 = 3300 J.

The average force on landing that acts on the front legs, 
however, is a little larger, because the horse’s horizontal ve-
locity component typically slows down to about 3 m/s upon 
landing during the 0.20-s contact. The vertical force Fy will 
be, as before, about 15,400 N, but we also have a horizontal 
force acting because of the reduction of the velocity by about 
1 m/s. The average horizontal force is

     Fx = m Δv/Δt = 57031/0.20 = 2900 N.

The total force is 

     F = (Fx
2 + Fy 2 )1/2 				            (9)

or 
     F = (29002 +15,4002)1/2 = 16,000 N.

Is this large force reasonable? The force measurements  
done for jumping over a 1.40-m fence, as reported in Ref. 2, 
are given as an average of 14 kN. So they are consistent with 
our higher value of 16  kN given the higher fence height. 

The ideal liftoff distance
The kinematics of elementary trajectory motion requires 

that the CM of the horse in our case clear the fence by a height 
of 0.58 m in about 0.7 s. If we want to maintain this height, 
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Fig. 5. Comparing the kinematics of two jumps for the same height 
above the fence. Red arrows are the launching and landing points for 
the small parabola, while the green arrows represent the launching 
and landing points for the large parabola.
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Note: Since the writing of this article, Eric Lamaze has sold 
his Grand Prix horse, Derly, and has acquired a number of 
young and potentially top Grand Prix jumpers. He is now 
competing in Florida in preparation for the summer season 
in his favorite venue, Spruce Meadows in Alberta.
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Water jumping
If equestrian jumping is like jumping hurdles, then water 

jumping is very similar to the long jump. The width of the 
jump at the Grand Prix at Spruce Meadows was 4.2 m. So Eric 
and Derly had to make sure that the jump was at least  
5.0 m long (Fig. 6 shows a jump of 6.2 m). The angle of eleva-
tion at takeoff was about 25o and the approach speed about 
7.5 m/s, because for a range of the trajectory to be 5.0 m, at an 
angle of 25o, the horizontal velocity must be 7.5 m/s . Follow-
ing the same reasoning as before, using Eqs. (1)–(3), we get 
that the time of flight is t = 0.7 s, vy = 3.5 m/s initially, and the 
height of the trajectory h = 0.61 m:

 5.0 = vx t = 7.5 t                            Therefore t = 0.7 s.
        Since tan 25o = vy /vx,	             vy = 3.5 m/s
        and the height h of the trajectory is h = vy

2 / 20 = 0.61 m.

The contact time for the takeoff is also about 0.20 s and 
therefore the vertical force necessary for the trajectory is 
given by 

 Fy = mg + m (3.5/0.20) = 570(10 + 17.5) = 15,600 N,

very much the same as for the 1.60-m fence.
On landing, the vertical force Fy, as for the hind legs on 

takeoff, is about 15,600 N. As before, the horse is reducing her 
speed, this time to about 5.0 m/s, from 7.5 m/s. Therefore, the 
horizontal force is

Fx = 570(2.5/0.20) = 7100 N.

The total force then is F = (15,6002 + 71002 )1/2 = 17,000 N, a 
little larger than the force required for the fence jumping.

These large forces acting on the horses, even if only for a 
very short time, are stressful for them. Riders are very con-
cerned about their horses and make sure that they are healthy, 
both physically and emotionally. Horses are examined by 
veterinarians before each competition. Serious accidents in 
Grand Prix jumping, unlike in steeple chasing and in racing, 
do occur but are rare.

Conclusion
While the data used and the estimates made by the author 

for these calculations are inadequate for a technical journal 
in biomechanics, the author hopes that after studying the 
physics of equestrian jumping in this way, the enjoyment of 
students watching a Grand Prix will be enhanced.

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                           

 

Fig. 6. The kinematics of an ideal jump across a 4.2-m water barrier 
with launching and landing points shown by red arrows. 
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