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Equestrian show jumping has become a popular 
spectator sport in Canada since the Beijing Olympic 
Games in 2008. Canada received a gold medal in singles 
and a silver in team competition. Eric Lamaze and his 
stallion Hickstead, generally regarded as the best show-
jumping horse of his generation, became internation-
ally famous, and Lamaze was ranked first in the world. 
Unfortunately, three years later Hickstead suddenly 
died in Verona, Italy, after jumping a clear round. This 
tragic event plunged the equestrian community into 
deep mourning.

These events reawakened the love for horses I ac-
quired when working in the forestry industry in British 
Columbia as a young man. As a physics educator, I 
naturally became interested in the physics of the jump-
ing motion of these magnificent animals.

I remember a letter written by an irate reader of 
the British journal New Scientist in response to my ar-
ticle “Physics and the Bionic Man” (Stinner 1980). The 
gentleman argued that my testing the feats claimed by 
the bionic man, using the laws of physics, spoiled the 
enjoyment of many devotees of the popular TV series 
The Six Million Dollar Man.

As students of physics, we can always appreciate 
the aesthetics of phenomena such as rainbows and 
sunsets, but understanding the physics should enrich 
our aesthetic appreciation. Similarly, equestrian show 
jumping can be appreciated on more than one level.

The Background Story
Last September I went to see some jumping events 

at Spruce Meadows, near Calgary, which is considered 
the Wimbledon of show jumping. I was especially in-
terested in understanding the kinematics and dynamics 
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of the jumping. I wanted to see if, as in the case of the 
physics of the bionic man, it was possible to establish 
a context, embedded in a good storyline that would 
interest many students.

The central idea behind contextual teaching of 
physics is that a context that attracts students’ interest 
and sparks the imagination can be developed in such 
a way that questions and problems arise from the 
context naturally, not in a contrived way (as in text-
books). Also, the problems generated have no obvious 
answer (even to the instructor) and can be solved using 
basic physics and mathematics. The reader is encour-
aged to visit my website to see the many large context 
problems I have developed over the years.1

It was easy to get data for the study of the dynamics 
of the bionic man by simply watching the TV series. It 
was also easy to show that the feats claimed for him 
were physically impossible. However, the feats of the 
show-jumping horses were there for all to see.

Nevertheless, the data for the jumping were not 
available. I considered taking a high-speed camera and 
a Doppler shift apparatus to Calgary to measure 
speeds—but I soon discovered that because of the 
apparatus required, as well as requiring access to a 
thoroughbred horse and a rider, this was not a realistic 
proposition.

My aim was to obtain enough data to describe the 
kinematics and dynamics of a horse’s jumping over a 
high fence and a wide water barrier, using basic physics 
and elementary mathematics suitable for high school 
physics students. I managed to combine the data from 
articles on biomechanics with simple observation of 
jumping on a CBC TV presentation of a Grand Prix event 
at Spruce Meadows. Using the TV remote control and 
the pause button, which responded to a time interval 
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of 1/50 s, I was able to estimate the speed, the time of 
flight and the time taken for a horse’s hind legs to 
“stop” moving just before the jump could be estimated. 
The results I obtained were reasonably good for both 
the kinematics and the dynamics of jumping.

Luckily, I had recorded other equestrian competi-
tions. I studied the motion of Eric Lamaze and his new 
young mare, Derly, in a Grand Prix event in which they 
placed second. That event—the CN Grand Prix of June 
12, 2012—can be found on YouTube. I encourage read-
ers to watch and study Lamaze and his horse.

Moghaddam and Khosravi (2007) were useful in 
estimating takeoff velocity, height of the centre of 
gravity (CG) trajectory, time of flight and range of the 
jump. Meershoek et al (2001) provided data for the 
forces on the horse’s legs on landing. These data were 
for jumping heights of 1.4 m.

For the kinematics and dynamics of clearing a fence, 
we need to know the following:

• The height of the fence. The height of the fence 
was 1.6 m, the maximum height permitted for the 
event.

• The speed of the horse just before liftoff. An investiga-
tion of the kinematics of horse jumping reports an 
average approach speed of 3.7 m/s (Moghaddam 
and Khosravi 2007). I assumed a speed of 4.0 m/s 
for our case.

• The angle of elevation of the horse just before takeoff. 
The average angle of elevation in Moghaddam and 
Khosravi (2007) was 40–45°. For our case, this angle 
was easily found by measurement to be about 40°. 
In Figure 1, the angle of Derly’s body is indeed 
about 40°.

• The time of contact between the hind hoofs that is needed 
for push-off. This time was estimated by counting 
the number of pauses required for the hind hoofs 
to produce liftoff, and was found to be about 0.2 s. 
This measurement is crucial for determining the 
forces involved.

• The time of flight of the horse and rider. Moghaddam 
and Khosravi (2007) report an average time of flight 
of about 0.8 s. Using the pause button, I found that 
the time it took for the horse to jump the 1.6 m 
fence was about 0.7 s. This value will be confirmed 
by kinematic calculations.

• The total distance from the contact point of takeoff and 
the landing on the front hoofs. This distance could be 
estimated to be about 5.0 m—again to be con-
firmed by kinematic calculations.

I also needed to know the weight (mass) and height 
of the horse, as well as the weight of the rider. Derly 
weighs about 500 kg, and her height is given as 17 
hands (1.73 m). With the mass of Lamaze and the 
saddle, the combined mass is about 570 kg.

Figure 1
Eric Lamaze and Derly jumping 
a 1.6 m fence. The takeoff 
angle is almost exactly 40° 
from the horizontal, and the 
distance from the fence to the 
hoofs is about 2.5 m. The CG 
of the pair is roughly 20.0 cm 
along Derly’s body, where 
Eric’s right foot is. Photo 
courtesy of Franz Venhaus.
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Approach
The horse must reach the fence at an even, steady 

gait (usually a canter motion) so that she can focus on 
the best spot for takeoff. See Figure 2a.

The horse reaches forward and down with her 
neck in order to lower the front legs and her CG. The 
front legs are propped or strutted out in front of 
the body. This relatively sudden braking action 
allows momentum to carry the hind legs further under 
the body of the horse than would otherwise be 
possible.

Jumping Fences
The following descriptions of the approach, takeoff, flight and landing during a jump are adapted from a com-

prehensive piece by Sheila Schils, a well-known expert in equine rehabilitation, entitled “Biomechanics of 
Jumping.”2

The Approach and the Push-Off

The Flight and the Landing

Figure 2
Fence jumping: approach, push-off, flight and landing

Takeoff
See Figures 2b, 2c and 2d.
As she finishes the last whole stride before the jump, 

the horse begins to shift her weight backward by raising 
her head, shortening her neck and lifting her shoulders.

Her neck continues to shorten to help move the 
weight backward. This also helps to stop the normal 
forward movement of the canter.

As the weight moves backward, the hind legs com-
press or coil. With the maximum amount of flexion in 
the hind joints, the horse can then create the maximum 
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push against the ground to propel herself up and 
 forward. The horse has the most effective takeoff when 
her hip joint is placed vertically above the hoof.

Flight
See Figures 2d, 2e and 2f.
The horse’s hind legs reach maximum extension 

after they leave the ground, and her front legs are 
curled tight against her body.

Her knees lift and bend to curl the legs up, the tighter 
the better, to reduce the chance of her hitting the fence 
with her front legs. To bend her knees and lift her fore-
hand (the front part of the horse’s body), the scapula 
(shoulder) rotates upward and forward. During the flight, 
the CG follows an approximate parabolic trajectory.

Landing
See Figures 2f and 2g.
To slow the forward momentum and reduce the 

force of impact, the horse swings her neck and head 
up as her forelegs reach toward the ground.

The horse’s nonleading front leg lands first. When 
her leading front leg lands, both legs push against the 
ground in an upward and backward direction. The 
hindquarters rotate underneath the trunk and reach 
toward the ground as the forehand moves forward and 
out of the way of the hindquarters.

Jumping Fences: Physical Principles
Approach and Takeoff

I am referring, for analysis, to one of the 1.6 m fences 
used in the Grand Prix. Derly approached this high 
fence with a speed of about 6.0 m/s. Her speed was 
reduced by a shorter stride to about 4.0 m/s just before 
she anchored her hind legs. We assume that the hori-
zontal speed of 4.0 m/s does not change significantly 
during the 0.2 s push-off.

In Figure 1, Derly’s front legs are lifted and her hind 
legs stop moving for about 0.2 s. This is called the 
stance phase. The front legs are coiled so that the body 
of the horse, with reference to the horizontal, can be 
as high as 45°, just before push-off. The hind legs un-
coil, and at the point of leaving the ground, the angle 
for the trajectory is about 40°. During this stance phase, 
the body moves about 0.8 m (4.0 m/s × 0.2 s).

At the moment of takeoff, Derly’s CG is about 20.0 cm 
along the line of her body, in front of Lamaze’s right foot.

Knowing the angle at takeoff and the horizontal 
velocity, we can easily determine the instantaneous 
vertical velocity at the beginning, the height, the range 
and the time of flight for the trajectory.

The Kinematics of the Jump
See Figure 3.
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The motion of the CG of horse and rider over a 1.6 m fence
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The motion of the CG of horse and rider over a 1.6 m fence
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Derly pushes off when the angle to the horizontal 
is about 40°, and the CG at this moment happens to 
be at about the same height as the fence. The horizon-
tal velocity (vx) is constant at about 4.0 m/s. (We will 
assume that the value of g, the gravitational attraction, 
is g = 10.0 m/s2.)

The vertical velocity (vy) at the moment of liftoff is 
given by

vy = vx tan 40°. (1)
Therefore,

vy = 4.0 tan 40° = 3.4 m/s
and the time t to reach height h is obtained from

vy = gt (2)
or

t = vy/g = 3.4/10.0 = 0.34 s.
The total time for the trajectory is 2t, or 0.68 s.

Since
vy

2 = 2gh, (3)
the height reached by the CG is

h = 3.42/20.0 = 0.58 m.
The total height from the ground to the CG is

1.60 + 0.58 = 2.18 m.
The range R of the CG is given by

RCG = 2vxt (4)
or

R = 4.0 × 0.68 = 2.72 m.

The tangential velocity vT at the point of liftoff is
vT = (vx

2 + vy
2)1/2

or
vT = (4.02 + 3.42)1/2 = 5.2 m/s.

Remember that the distance from the spot where 
the hind leg hoofs take off and the horizontal distance 
to the CG (that is, the start of the trajectory) is about 
1.0 m. If the jump is perfectly symmetrical (and it sel-
dom is), the distance from the base of the fence to the 
point of contact, in this case, is about 2.72 m. The total 
range R is

R = 2.72 + 2.0 = 4.8 m.
It should be noted that the location of Derly’s CG 

(see Figure 1) does change somewhat during the flight 
as the horse’s body configuration changes (due to the 
movement of the neck and the leg during the flight). 
Therefore, the trajectory is only an approximate pa-
rabola, as indicated in Figure 4.

The Dynamics of the Jump
The motion during the push-off stage that takes 

about 0.2 s is fairly complicated. Looking at Figure 2, 
it is clear that the force F produced by the hind legs is 
almost vertical. However, it misses the CG by a small 
distance d, which increases during this short time of 
contact. At the start of the push, Derly’s body is along 
an elevation of about 45° (see Figure 5). As the hind 
legs push forward (remember that the hoofs are 

CG

Parabola: R = 2.80 m

H= 0.58m                       Time for flight: 0.68 s

Fence: 1.60m

-------------------------1.0m----------1.4m-------------1.40 m----------1.0m------------                                        
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Total range= 4.80 m           

Figure 4

The kinematics of jumping a 1.6 m fence

Figure 4
The kinematics of jumping a 1.6 m fence
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 stationary during this brief period), the body moves 
about 0.8 m forward. The product of dF is a torque, 
which causes Derly to rotate clockwise for about 0.2 s. 
When the hoofs leave the ground, the CG has moved 
about 0.8 m horizontally and Derly is moving with 
an initial vertical velocity of 3.4 m/s and a constant 

 horizontal velocity of 4.0 m/s—essentially along a 
parabolic trajectory. The resultant initial velocity, then, 
must be 5.2 m/s, as shown earlier.

When contact with the ground has ended, the direc-
tion of the body of the horse is about 40° with the 
horizontal.

CG                       F (average) = mg + mΔvy /t                   F (Total)  = 15400 N

                                     0.80m         

                                         d                                                                         F (average)   

                                                                                                                            =   mΔvy /t = 570x3.4 / 0.20 = 

Take-off angle: 40°                                                        9700 N

                                                                           t = 0.20 s  

                                          

                            Initial                  vy = 3.4 m/s                        

angle:  45°                                                                             mg = 5700 N

______Hind hoofs                          Vx = 4.0 m/s

( Note: The CG moves about 0.80m during the contact time of  0.20 s

                 

                         Force                             

                                       (N)                                              Average force

 

                                                                                       0.20                Time (seconds)

                                                         

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx   

Figure 5

Forces acting during takeoff (0.2 s)

Figure 5
Forces acting during takeoff (0.2 s)



50 ASEJ, Volume 43, Number 1, June 2013

The impulse, FΔt, is equal to the rate of change 
of momentum, or FΔt = mΔv, where F is an average 
force.

We can estimate the average force acting on the 
legs to produce the liftoff by finding the vector sum of 
the vertical and horizontal force during contact. In 
addition, we assume that, for the liftoff, most of the 
force acts in the vertical direction and we can ignore 
the horizontal force. The combined mass of Derly, 
Lamaze and the saddle is about 570 kg.

The average push force during the 0.2 s can be 
obtained by using the relationship between impulse 
and change of momentum:

FΔt = mΔv.
Therefore,

F = mΔv/Δt.
The vertical force necessary to propel the CG of the 
horse to the height h is

Fy = mg + mΔv/Δt
Δv/Δt = 3.4/0.2 = 17.0.

Therefore,

Fy = m(g + Δv/Δt) = 570(10.0 + 17.0) = 15,400 N.

This is a large average force that acts during the 0.2 s 
contact. The force varies during this short time and 
peaks at perhaps 19,000 N, at about t = 0.1 s, as shown 
in Figure 5. Therefore, the force calculated is an aver-
age force.

The force is equivalent to about 15,000 N, or a 1,500 
kg-force, or about 3,300 lb. Therefore, each leg must 

be able to support a force of about 750 kg-force in a 
symmetric case.

The total energy expended by the hind legs for our 
jump is given by

E = mgh.
Therefore, the energy produced for the jump is

E = 570 × 10 × 0.58 = 3,306 J.
It is interesting to calculate the average power 

generated during this jump. Since about 3,300 J of 
energy is produced by the push-off in 0.2 s, the power 
is 3,300/0.2 = 16,500 W, or about 22 HP.

About 7.0 W/kg is produced by each hind leg when 
jumping a fence 1.4 m high.

The average force on landing that acts on the front 
legs, however, is a little larger, because the horse typi-
cally slows down to about 3.0 m/s during the 0.2 s 
contact. See Figure 6.

The vertical force Fy is, as before, about 15,400 N, 
but we also have a horizontal force acting because of 
the reduction of the velocity by about 1.0 m/s. The 
average horizontal force is

Fx = mΔv/Δt = 570 × 1.0/0.2 = 2,900 N.
The total force is

F = (Fx
2 + Fy

2)1/2

or
F = (2,9002 + 15,4002)1/2 = 16,000 N.
Is this large force reasonable? The force measure-

ments for jumping over a 1.4 m fence, as reported in 
Meershoek et al (2001), are given as an average of 14 kN.

F = 16000 N              Fy = 15400N

F

40°

______________________________________________________  ___________________

Fx = m (4-3)/0.20 = 2900N           

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 6

Forces acting on landing

Figure 6
Forces acting on landing



ASEJ, Volume 43, Number 1, June 2013 51

The Ideal Liftoff Distance
The kinematics of elementary trajectory motion 

require that the CG of the horse in our case clear the 
fence by a height of 0.58 m in 0.68 s. If we want to 
maintain this height, the time of the trajectory does 
not change with the push-off distance (see Figure 7). 
This is a well-known discrepant event, and it always 
astonishes students when they see a demonstration, 
using balls rolling off a table at different speeds.

We can assume that the ideal liftoff distance from 
this fence is about 1.4 m (that is, the distance from the 
CG to the fence at the moment of liftoff). The hind 
hoofs must be anchored at a distance of about 2.5 m 
from the fence. The angle of elevation of the horse at 
the beginning of the push will be about 45°, and at the 
moment of liftoff it will decrease to about 40°. The 
clockwise rotation of the horse’s body during this brief 
0.15 s contact time is due to the torque produced by 
the upward push of the legs, the direction of this force 
missing the CG by a small amount.

For example, if the distance of the CG on takeoff is 
only 0.5 m closer to the fence, then the angle at takeoff 
will be over 50°. On the other hand, if the horse jumps 
from a distance 1.0 m behind the optimum distance of 

about 2.4 m, the angle will be about 30°, but the hori-
zontal velocity will have to be 7.2 m/s. Since the horse 
generally slows down by about 2.0 m/s just before the 
takeoff stance, the approach velocity would have to be 
at least 9.0 m/s. This velocity usually requires galloping 
and results in lessening the horse’s ability to assume 
a symmetric stance for takeoff.

In addition, the forces acting on the front legs will 
be a little larger, because the horse typically reduces 
the landing speed to about 3.0 m/s. That means that 
there is a greater horizontal force than in the optimal 
case:

Fx =mΔv/Δt = 570(7.2 – 3.0)/0.20 = 12,000 N.

The vertical force, as for the hind legs, is 15,400 N.
The total force acting on the front legs then is

F = (Fx
2 + Fy

2)1/2 = (12,0002 + 15,4002)1/2 
= 20,000 N.

This is a considerably larger force acting on the 
front legs than when jumping the shorter trajectory.

Therefore, if Lamaze chooses the longer jump to 
gain advantage in time, he risks his horse having to 
encounter greater retarding forces, especially on 
landing.

Figure 7
Comparing the kinematics of two jumps for the same height above the fence

CG                         vx = 7.2m/s                                                                  Parabola:   R2 = 4.80m  

Parabola: R1 = 2.80 m

H = 0.58                                       Time for flight: 0.68 s 

vx = 4.0m/s                            Fence:

1.60 m

-----1.0m--------------1.0m-------1.4m--------------1.40m-----------1.0m--------1.0m-------------------
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Total range for jump 1  =  4.8 m

Total range for jump 2  = 6.80 m            

Figure 7

Comparing the kinematics of two jumps for the same height above the fence
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Finally, it should be mentioned that just as in the 
case of the takeoff force acting behind the CG of the 
horse, producing a clockwise rotation, the contact 
force produced by the front legs on landing acts in 
front of the CG and produces a counter-clockwise rota-
tion. Indeed, if the angle of descent is large enough, 
the horse will rotate clockwise, which results in a 
dangerous somersault, with a potential of severe injury 
to both rider and horse.

Water Jumping
If equestrian jumping is like jumping hurdles, then 

water jumping is similar to the long jump. Figure 8 
shows an ideal water jump.

The width of the jump at the Grand Prix at Spruce 
Meadows was 4.2 m. So Lamaze and Derly had to make 
sure the jump was at least 5.0 m long (see Figure 9). 
The angle of elevation at takeoff was about 25° and 
the approach speed about 7.5 m/s, because for a range 
of trajectory to be 5.0 m, at an angle of 25°, the hori-
zontal velocity must be 7.5 m/s. Following the same 
reasoning as before and using equations 1, 2, 3 and 4,

5.0 = vxt = 7.5t.
Therefore, t = 0.7 s.

Since tan 25° = vy/vx, vy = 3.5 m/s, the height h of 
the trajectory is

h = vy
2/20 = 0.61 m.

The contact time for the takeoff is also about 0.2 s and, 
therefore, the vertical force necessary for the trajectory 
is given by

Fy = mg + m(3.5/0.2) = 570(10.0 + 17.5) = 15,600 N,

very much the same as for the 1.6 m fence.
On landing, the vertical force Fy  , as for the hind legs 

on takeoff, is about 15,600 N. As before, the horse is 
reducing her speed, this time to about 5.0 m/s, from 
7.5 m/s. Therefore, the horizontal force is

Fx = 570(2.5/0.2) = 7,100 N.

The total force then is

F = (15,6002 + 7,1002)½ = 17,000 N,

a little larger than the force required for the fence 
jumping.

These large forces acting on the horses, even if only 
for a short time, are stressful for them. Riders are 
concerned about their horses and make sure that they 
are healthy, both physically and emotionally. Horses 
are examined by veterinarians before each competition. 
Serious accidents in Grand Prix jumping, unlike in 
steeple chasing or racing, are rare.

Figure 8
Kinematics of jumping the water barrier

CG

Parabola     Range:  4.2 m    

Height: 0.61m

1.50 m                        Time of flight: 0.70 s                                            

1.0m             .                                Range: 6.2m   

________________________________________________________        1.0m

Water barrier 

Figure 8

Kinematics of jumping the water barrier

xxxxxxxxxxxxxxxxxxxxxxxxxx
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Comparison with Hurdles and 
the Long Jump

The world record for the 400 m hurdles for men is 
about 47.0 s. That means that the average speed of 
the athlete in this event is about 8.5 m/s. The average 
speed at the Spruce Meadows International Grand Prix 
ring, over a distance of 550 m and with a restricted 
time of 84.0 s, is about 6.7 m/s. The maximum speed 
of a human sprinter today is about 10.5 m/s (38.0 km/h), 
but show-jumping horses can run as fast as 14.0–15.0 
m/s (50.0 km/h). There were two places where the horse 
could gallop between barriers, notably before the water 
jump, where Lamaze seems to have allowed a speed 
of over 10.0 m/s for Derly over a distance of about 
25.0 m.

The kinematics and dynamics of jumping over a 
hurdle about 1.0 m high are similar to those of the 
show jumper clearing a high fence. The approach speed 
for the hurdle, however, is much higher—about 
10.0 m/s. The takeoff angle is 70–80°, almost twice as 
steep as that of the horse jumping a high fence. Stu-
dents can work out the force required for an athlete, 
with his centre of gravity about the height of the hurdle 
and a mass of 70 kg, to clear the hurdle at a height of 
about 30.0 cm.

The kinematics and dynamics of the long jump are 
also similar to the jump of a horse over a water barrier. 
Olympic long jumpers typically jump over 8.0 m. They 
approach the liftoff point with a speed between 9.0 and 
10.0 m/s. The optimum angle of elevation is about 20°. 
Again, students could study the kinematics and dynamics 
of the long jump of a world-class athlete for comparison.

Conclusion
The data used in these calculations would not be 

sufficient for an article in a technical research journal 
on biomechanics. However, our results look reasonable 
and the physics we used is solid, so that improved data 
could easily be applied. I hope that after studying the 
physics of equestrian show jumping, students will get 
more enjoyment out of watching a Grand Prix.

I hope to send a copy of this article to Eric Lamaze, 
and perhaps after reading it, he will invite me to Spruce 
Meadows to make good measurements, using Derly as 
our subject.3 I would be especially interested to find 
out how many of these principles of kinematics and 
dynamics Lamaze consciously applies when judging 
his speed and position for jumping. However, perhaps 
a study of the physics of his craft would compromise 
his smooth and seamless riding.

Figure 9
Eric Lamaze 

and Derly 
jumping a water 

barrier
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Notes
I would like to thank my wife, Ann, for the sketches in 

Figure 2 and her helpful suggestions for improving the 
article.

1. http://home.cc.umanitoba.ca/~stinner/teacherresources 
.html

2. See www.equinew.com/jumping.htm (accessed May 7, 
2013).

3. Unfortunately, since the time of writing, Eric Lamaze has 
sold Derly and is concentrating on developing his young stallion 
Wang Chung M2S. He has had some good wins lately. We wish 
them a successful future.
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