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The pendulum and the inclined plane played a
central role in the development of kinematics
and dynamics during the 17th century.

Galileo’s kinematics rests on experiments and thought
experiments connected with the inclined plane and
the pendulum.  Later, Newton used pendula and
Galilean kinematics to test and demonstrate his laws
of motion and to confirm the equivalence of inertial
and gravitational masses.1,2

The pendulum also played an important role in the
next two centuries.  George Atwood used the pendu-
lum in his famous machine named after him to test
Newton’s second law of motion.  Count Rumford,
mentioned in textbooks as the debunker of the caloric
theory, in 1781 adapted the pendulum in his ballistic
device to measure the muzzle velocity of bullets, used
until the recent effective application of high-speed
photography.  Jean Foucault designed a very long and
heavy pendulum to demonstrate for the first time di-
rectly that the Earth revolves around its axis.  Indeed,
the study of the harmonic oscillator in all its manifes-
tations in dynamics and electricity, in our everyday ex-
periences and our models on the atomic level, can be
traced back to the properties of the pendulum.  Re-
cently the pendulum again became a high-profile 
object in the demonstration of chaos theory.

Here we offer three examples, inspired by Galileo’s
work, for connecting the physics of the pendulum
with free fall and the inclined plane.  The first exam-
ple discusses the time it takes for a ball to slide down a

frictionless inclined plane along a chord, drawn from
the lowest point of a vertical circle to any point on the
circle (see Fig. 1).  The second example discusses a
timing method that Galileo tested in measuring free
fall directly (see Fig. 2), and the third example out-
lines an approach we have developed for accurately
calculating the period of a pendulum for any angle,
using only the kinematics of accelerated motion along
an inclined plane, first studied by Galileo (see Figs. 3
and 4).

The Pendulum and Free Fall
Textbooks often tell students that Galileo “diluted

gravity” using an inclined plane and extrapolated to
the motion of free fall.  However, textbooks generally
don’t mention that Galileo also studied free fall direct-
ly, using an ingenious method of timing the fall with a
pendulum.  Before repeating his experiment to test
free fall directly, we will describe his arguments to
show that the time of descent of an object (on a fric-
tionless surface) along an incline represented by any
chord is the same, and is equal to the time it would
take for an object to fall through a distance of 2L (see
Fig. 1). 

Galileo proved this theorem, using a geometric ar-
gument with Euclidean ratios T1

2 / T2
2 = D1 /D2 Us-

ing modern algebraic methods is much easier:  Refer-
ring to Fig. 1, we first note that two chords that con-
nect the endpoints of the diameter of a circle are al-
ways perpendicular (i.e. AD � DE, AC � CE, and so
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on).  We also note that by comparing angles of trian-
gles that angle DAF is �/2 and in turn this is the angle
the incline makes with the horizontal (DEG).  There-
fore, for a sphere sliding down the incline DE, the ac-
celeration is g sin �/2 and from triangle ADE, sin �/2
= d/2L, where d is the length of the incline and

L is the radius of the circle.  It follows from d = �
1

2
�at2

that the time for the sphere to roll down the plane is
2(L/g)1/2.  Now, if we consider a freely falling sphere
released from point A, the distance it will fall can

also be found from d = �
1

2
�at 2 and the time for free 

fall equals 2(L/g )1/2.  Clearly, the argument holds
for all angles of � between 0� and 180�. 

Our second example is based on an experiment
Galileo actually performed as a young man in about
1600.3 A pendulum was held out from a vertical
board and released simultaneously with the dropping
of a weight.  He adjusted the pendulum length until
the “thud” of the pendulum hitting the wall coincided
with the “thud” of the weight hitting the floor.  Since
the period of the pendulum was known, the time it
took for the pendulum to hit the wall would be one-
fourth of the period of the pendulum.  We have built
a simple device (see Fig. 2) to perform an experiment
in class to show that Galileo also tested free fall other
than using an inclined plane.  Two identical spheres,
one attached as a pendulum and the other hanging
freely, are connected with a fine line by a pulley sys-
tem as shown.  We can adjust the height of the sus-
pended ball on the right-hand side of the apparatus
such that it strikes the ground at the same time as the
pendulum contacts the support when the line is cut.
Then, the time for free fall exactly equals one-fourth
of the period of the pendulum.  It is now easy to find 

the value of g from d = �
1

2
�gt2, where d is the meas-

ured 

height of the freely falling sphere above the ground.
(Students should be aware of the fact that the accu-
racy of the period of a pendulum, as given by
Huygens’ formula, is acceptable only for angles less
than about 10�).  

We should remember that Galileo stated the period
of a pendulum only as a proportionality statement.
He said in his book, published in 1638, just before his
death,

“As the times of vibrations of bodies suspended by
threads of different lengths, they bear to each other
the same proportion as the square roots of the
lengths of the thread.” 4

Therefore, Galileo was not able to use the pendulum
directly to determine the value of g, the acceleration
due to gravity.  Huygens, on the other hand, about
30 years later, was able to find the formula we use
today [T = 2� (L/g)1/2] and solve for g in terms of
the period T and the length L of the pendulum.  He
obtained very accurate (three significant figures)
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Fig. 1. Galileo’s geometric argument for equal time
descent.
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Fig. 2. The free-fall experiment using a pendulum. 
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answers.1 It should also be noted, however, that
Galileo was not interested in finding the value of g,
but rather “the ratio of the distance fallen from rest
to the length of a pendulum whose period divided
by four is the time required for that fall.”  Students
could try to show that, at the risk of committing a
slight anachronism, using Huygens’ formula T = 2�
(L/g)1/2, this ratio is �2/8, and that the ratio is con-
stant for all heights of fall, at all places on Earth and
even on the Moon.   

A General Solution for Calculating
the Period of a Pendulum

Galileo’s biographer, Vincenzo Viviani, recalls that
Galileo became interested in the motion of a pendu-
lum after he observed a suspended chandelier swing
back and forth in a cathedral.  The astute Galileo rec-
ognized the practical implications for motion that was
isochronic.  At this time, the mechanical clock, using
a heavy weight and gravity to power the mechanism,
worked in an irregular and unpredictable manner.  A
pendulum with its even and natural motion, connect-
ed to the escape mechanism of a clock, could be used
to beat out equal time intervals, substantially improv-
ing the timing devices of the day.

Surprisingly, Galileo mistakenly believed that the
period of a pendulum was independent of the ampli-
tude of the swing.  He states that:

“If two people start to count the vibrations, the one
the large, the other the small, they will discover that
after counting tens and even hundreds, they will not
differ by a single vibration, not even by a fraction of
one.” 5

In 1639, the mathematician Mersenne, who also
studied the theory of the pendulum, argued against
Galileo and claimed that the period of the pendulum
was not isochronous:

“And if he (Galileo) had merely counted the thirty or
forty oscillations of the one pulled aside twenty de-
grees or less and the other eighty or ninety degrees,
he would have known that the one having the short-
er swings makes one oscillation more in thirty or forty
oscillations.”6

How could Galileo have tested his claim that the
period of a pendulum is independent of the ampli-

tude?  Clearly, direct comparison of the swings of two
pendula, with different starting amplitudes, should
show that they will be out of phase very quickly, as
Mersenne claimed.  So, why was he still convinced of
his claim?  One answer is that he believed in the con-
stancy of the period of the swing so strongly that he
dismissed the observation on physical grounds (fric-
tion?), even though the two pendula were out of phase
after a number of swings.

Galileo also experimented with balls rolling along a
polished concave hoop.  Describing the motion along
the hoop he stated that:

“...wherever you place the ball , whether near to or
far from the ultimate B, and let it go, it will arrive at
point B in equal times …” 3

Together with his law of chords, his law of ampli-
tude amounted to believing that the shortest time of
descent of a frictionless object in a vertical plane
(brachistrochrone) is the arc of a circle.  Actually,
Galileo did investigate the motion of a ball along an
inclined plane as compared to the motion of a ball
along the corresponding arc of the circle (see Fig. 3).
His conclusion, after a lengthy geometric argument,
was that the motion along the longer arc is such that it
takes less time to reach the nadir than for the motion
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Fig. 3. Galileo’s sketch taken from Two New Sciences.8
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along the shorter inclined plane.  It is interesting to
note that already 100 years earlier, Leonardo da Vinci
came to the same conclusion.7 Later, Huygens
showed that it is the cycloid and not the arc of a circle
that is the least time of descent of an object in a verti-
cal plane and applied this finding to improving the
pendulum clock.

We will now investigate the time of descent of a
ball along the arc of a circle by placing a number of in-
clined planes along the arc, as shown in Fig. 4.  The
more inclined planes we use, the more closely we will
mirror the motion of a ball along the arc.  We will find
that the time of descent does depend on the angle of
amplitude and two results will surprise us.  One is that
it takes only about 10 inclined planes to get accurate
results.  The other unexpected result is that the period
can vary to a maximum of about 17% from that pre-
dicted by Huygens’ formula.

We are now in the position to apply Galileo’s find-
ings and the kinematics of uniform acceleration to de-
termine the period of a pendulum to any desired accu-
racy, for any angle.  We imagine a sphere rolling down
a number of inclined planes.  The motion starts from
rest, then accelerates uniformly to velocity v1.  This
velocity now becomes the initial velocity at the start of

the second inclined plane, again accelerating uniform-
ly (with a lower acceleration) to a velocity of v2, etc.,
until the sphere reaches the lowest point.  To find the
period of our pendulum, we will add all of the indi-
vidual times for each incline for one-quarter of a
swing and multiply by four.  The initial velocity of the
sphere on each plane is the final velocity of the sphere
on the preceding plane; therefore; we can apply 

v2
2 = v1

2 + 2a d (1) 

to calculate the velocities.  The acceleration for each
plane is given by a = g sin � such that sin � = h/d,
where h is the height and d is the length of the
plane.  We also know that for a uniformly accelerat-
ed object,

d = v1t + �
1

2
�a t2. (2)

Solving this equation for t using the quadratic for-
mula gives us the time it takes to descend the plane:

t = .                                      (3)

A spreadsheet is well suited for making repeated
calculations and has the additional advantage of let-
ting us quickly see the effects of any changes that we
might make to the situation.  In our case we wish to
calculate the period of a pendulum for any angle using
any number of inclined planes to approximate the arc
of the pendulum.  The greater the number of inclined
planes the more accurate the result.  Since we choose
the angle of swing, we need to find the height (hk)
each plane rises and the length of the planes (d) to
complete the calculations.

For convenience we select an arc of radius 1, let �
be the angle of the swing, and let n be the number of
inclined planes used to calculate the period (see Fig.
4).  Thus, the angle the last inclined plane subtends is 
� = �/n.  For example, Fig. 4 illustrates an angle of
swing of 75� with n = 3 inclined planes, such that the
last inclined plane subtends an angle of 25�.  In this
case, the angle each chord segment subtends is 25�,
50�, and 75�, respectively.  We note that by comparing
angles of triangles that angle AFB will be �/2; there-
fore, the length of the plane (D3) from right triangle
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Fig. 4. Sketch for n-inclined planes calculations.
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ABF is 2 sin (�/2).  In order to find hk we need to find
the cord length (Dk) and the height of this chord
above the nadir (Hk).  Using triangle ADE, we can
show that Dk = 2 sin [(n–k–1)(�/2)] and therefore 
Hk = Dk sin [(n–k +1)(�/2)], where k = 1,2,3 ... and

the angle of each inclined plan is [(n–k+1)(�/2)].  The
height of a plane can be calculated by hk =  Hk – Hk+1.  As
a result, Eq. (1) becomes vk = [–(vk-1)2 + 2 g hk-1]1/2 and
the time for the ball to move down the kth incline can be
found by solving Eq. (2) using the quadratic formula.
Thus,

t k = 

and the corresponding period would be T = 4(t1 + t2 + t3
+ ...  tn).

The layout of the spreadsheet is shown in Table I.  Row
G contains the formulae that are used to calculate the val-
ues in the corresponding columns.  We can easily select
the angle of the swing by entering a value in cell B3.  In
this example we show the results for an angle of 60� and 
n = 10 inclined planes.  The problem of finding the period
of a pendulum for any angle (up to 90�) can also be solved
analytically using elliptical integrals.2 In Table II we com-
pare the results of our model for finding the period of a

–vk –1��(v�k�–� 1�)2� +� g�hk�
���

g(hk/d)

TModern = 2�(L/g)1/2 [1 + 1/4 sin2 (�/2) + 9/64 sin4 (�/2) + 

225/2304 sin6 (�/2)

TGalileo = Based on spreadsheet calculations for n = 10

THuygens = T = 2� (L/g)1/2

Table I.  Calculating the period of a pendulum for large angles.

A1 2 3 4 5 6 7
B 60.00 0.1047

C N Angle (�) d

D 10 0.10 2 sin (a/2)

E
F n Dk Hk hk vk tk

G Dk = 2 sin [(n–k+1)(�/2)]      Hk = Dk sin [(n–k+1)(�/2)] hk = Hk–Hk+1     vk = [–(vk–1)2 + 2ghk–1]1/2 tk =

H 0

i 1 1.00 0.50 0.09 1.31 0.1596

I 2 0.91 0.41 0.08 1.82 0.0668

J 3 0.81 0.33 0.07 2.18 0.0523

K 4 0.72 0.26 0.07 2.46 0.0451

L 5 0.62 0.19 0.06 2.68 0.0407

M 6 0.52 0.13 0.05 2.85 0.0379

N 7 0.42 0.09 0.04 2.97 0.0360

O 8 0.31 0.05 0.03 3.06 0.0347

P 9 0.21 0.02 0.02 3.11 0.0339

Q 10 0.10 0.01 0.01 3.13 0.0335

R

S 1/4TN 0.5405

T Tn 2.162

–vk –1��vk� –�1�)2� +� g�hk�
���g(hk / d )

� THugyens
(s) TIntegral(s)       TGalileo(s)

5� 2.01 2.01 2.02

10� 2.01 2.01 2.02

30� 2.01 2.04 2.05

60� 2.01 2.15 2.16

90� 2.01 2.35 2.37

Table II. Comparing the periods of a pendulum for the
three approaches discussed.
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pendulum with those based on Huygens’ formula and
the modern analytical solution using elliptical inte-
grals for a length of 1.0 m.

Concluding Remarks
Our first example is an exercise that challenges

physics students.  When encountering this theorem
for the first time, it often seems counterintuitive,
much like the discovery that the descent of a ball
along a bowl is quicker than along the corresponding
inclined plane.  Moreover, proving the theorem in-
volves the combining of geometry, trigonometry, alge-
bra, and physics.  The second example always delights
students and teachers alike for its ingenuity and novel-
ty (textbooks simply do not mention it).

The third example illustrates the number-crunch-
ing power of the PC in a way that students can easily
understand.  Our method of approximating the mo-
tion of a pendulum with the continuous rolling
sphere on n inclined planes with incrementally de-
creasing accelerations yields accurate results even
when compared to our most comprehensive formula,
which in itself is an approximation, based on elliptical
integrals.  Indeed, our derivation is quite easy to un-
derstand, even for the student of introductory physics. 

A final note:  Originally, we were going to have a
fourth example, namely the Galilean theorem, show-
ing that the speed of a pendulum at the lowest point
is directly proportional to the arc length.  This was
an important theorem for Newton when demon-
strating the third law of motion, using colliding pen-
dula, what really is a demonstration of the conserva-
tion of linear momentum principle.  However, this has
been well done by Ehrlichson in a recent issue of
TPT.2
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For more information, refer to the International Pendulum
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