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Abstract
Calculations at high school level can be used to show how Newton estimated
the age of the Earth from the cooling of a hot body and later Helmholtz and
Kelvin applied thermodynamic arguments to finding the ages of both the Sun
and the Earth. Finding the Sun to be younger than the Earth was a puzzle
until the discovery of radioactivity and the Sun’s true source of power.

This paper will review the main attempts made
to calculate the age of the Earth and the Sun,
beginning with Newton’s thought experiment and
ending with Hans Bethe’s thermonuclear model of
the Sun’s energy. These ideas will be presented in
two parts. In Part I, special attention is paid to
the protracted debate about the age of the Earth
in the second half of the nineteenth century that
involved Kelvin and Helmholtz. The first part of
the paper will terminate with a brief mention of
the radioactive/nuclear theories being developed
just prior to the death of Kelvin in 1907. Part
II will discuss the rise of radioactive dating and
the emergence of the thermonuclear model. The
results of the calculations are given in the main
text but details can be found in the appendices,
called Blocks. Most of the problems discussed
can be used in senior high school physics in North
America or at the A-level in Britain. The content of
the paper should also provide a good background
for physics instructors to enrich their presentations
with interesting problems beyond the textbook.

Newton’s thought experiment
Newton presented a thought experiment in the
Principia to show that a large body like the Earth
made of molten iron would take about 50 000 years
to cool. He first estimated the time it would take
to cool for a ‘globe of iron of an inch in diameter,
exposed red hot to open air’. He then argued

that, since the heat retained is in proportion to
the volume and the heat radiated in proportion
to the exposed area, the time for cooling would
be proportional to the diameter (Dalrymple 1991,
p 28). See Block A1.

We can check how good a guess Newton
made by using Stefan’s radiation law of 1878,
and not, as may be expected, Newton’s law
of cooling. Textbooks generally state that
Newton discovered experimentally that the rate
of cooling of an object is proportional to the
difference between the temperature of the object
and that of its surroundings. This proportionality
statement leads to an exponential expression that
most physics textbooks discuss, and students
use it to solve problems. It turns out that
Newton used the proportionality statement only to
calibrate a linseed thermometer that could measure
temperatures higher than 200 ◦C (French 1993).
Moreover, it is now known that this relationship
does not hold for high temperatures (Silverman
2000).

Using Stefan’s law of radiation to calculate the
cooling time

The law states that H , the rate at which an object
radiates heat per unit area is proportional to the
fourth power of the absolute temperature:

H ∝ T 4 or H = eσT 4.
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σ is a universal constant and found experimentally
to be 5.7 × 10−8 W m−2 K−4, and e is a constant
between 0 and 1, depending on the metal
considered.

The cooling time from an initial temperature
Ti to a final temperature Tf is given approximately
by

t = (1/T 3
f − 1/T 3

i )mc/3σA

whereTi is the temperature at time t , Tf the ambient
temperature (both expressed in kelvins), m is the
mass, c the specific heat capacity and A the area
of the object (see Block A2).

Applying this formula to the small iron
sphere, we find that the cooling time is about 47
minutes. For the time of cooling of a globe of the
size of the Earth that is made entirely of iron, we
obtain about 45 000 years (see Block A2).

This is in very good agreement with Newton’s
conclusion. Of course, the cooling time for such a
large object would be very much longer, because
it would take considerable time for the heat to be
conducted to the surface as the body cools. To
solve the problem of temperature distribution for
such a case would require the application of a
Fourier analysis, later accomplished by Kelvin.

Count de Buffon tests Newton’s thought
experiment
Buffon was one of the most productive scientists
of the eighteenth century. He was interested in
determining the age of the Earth, and being a
wealthy man he asked his foundry to make him
ten iron spheres, in increments of 1

2 inch up to
5 inches. He concluded that if the Earth had been
made of molten iron, it would require 42 964 years
to cool below incandescence and 96 670 years to
cool to the present temperature.

Today, we smile at such efforts. However,
one must remember that in the mid-eighteenth
century alchemy was still in vogue and there was
not even an elementary theory of heat established.
Buffon believed and demonstrated that nature
was rational and could be understood through
physical processes. He was also the first to
apply experimental techniques to the problem
of the age of the Earth. A century passed,
however, until Helmholtz and Kelvin, equipped
with more sophisticated physics and experimental
procedures, tackled the problem again.

Helmholtz and the age of the Sun
Hermann von Helmholtz was the most famous
German natural philosopher and cosmologist of
his generation. He was one of the original
contributors to the General Principle of the
Conservation of Energy. Already in 1854 he
argued that the Sun’s energy must be supplied
by gravitational contraction because no known
chemical reaction could produce sufficient energy.
His calculations showed that the Sun could supply
the energy we measure without us being aware of
the contraction. According to his model the Sun
could be about 20 million years old.

The Sun as a furnace burning coal

Helmholtz first calculated that if the Sun’s energy
were due to a chemical source, the life expectancy
would be about 5000 years. This is easy to show
and can be discussed in a science class at the upper
middle school level (see Block B1).

The Sun as a gravitationally collapsing body

Helmholtz immediately rejected this model and
argued that gravitational collapse of the original
cloud of material to the present size of the Sun
was the source of the Sun’s size and its continued
production of energy. He assumed that material
fell into a proto-mass from infinity and the Sun
grew by accretion and heated up to the present
temperature.

In his famous ‘Popular Lectures’ of 1857 he
discussed this model and gave the value for the
gravitational potential energy of the Sun as shown
in Block B2. He found that the approximate
gravitational potential energy then is 2.3 × 1041 J.
Since he knew the energy output of the Sun,
Helmholtz was able to estimate the age of the Sun
and found it to be about 21 million years (see Block
B3).

The temperature of the Sun

Helmholtz estimated the temperature of the Sun by
assuming that the specific heat capacity of the Sun
was equal to that of water and that the mechanical
equivalent of heat (just recently published by
Joule) was about 4.2 joules per calorie, as shown
in Block B4. The temperature Helmholtz found
was 28 611 000 ◦C. It is interesting to note that the
estimated temperature of the centre of the Sun is
about 108 K.
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The pressure at the centre of the Sun

Helmholtz also calculated the pressure at the
centre of the Sun and obtained a value of about
1.3 × 1014 N m−2. To show this, only a very
simple calculation is needed—see Block B5. The
modern value for the pressure at the centre of the
Sun is about 1015 N m−2, an order of magnitude
different. Of course, Helmholtz did not realize that
at that pressure and temperature thermonuclear
fusion would be initiated.

The rate of shrinkage of the Sun

Finally, Helmholtz estimated the shrinkage of the
Sun necessary to produce sufficient energy to
account for the estimated output of 3.6 × 1026

joules per second. He came to the conclusion that
about 80 m of shrinkage per year is necessary. The
results of the calculations made by Helmholtz can
be studied in Block B6.

Kelvin and the age of the Sun
Kelvin first established the age of the Sun, before
calculating the age of the Earth. Like Helmholtz
he quickly dismissed the chemical energy theory,
because it allowed for less than 10 000 years.
He then investigated the physics of his meteoric
hypothesis. In this hypothesis he assumed that the
energy of the Sun is replenished by a constant rate
of meteoric bombardment.

He calculated the kinetic energy of impact of
a mass of 1 pound of matter falling into the Sun
at the escape velocity of the Sun. Using SI units,
a quick calculation shows that a 1 kg mass hitting
the Sun at the escape velocity of 624 km s−1 would
have a kinetic energy of 1

2 × 1 × (6.24 × 105)2 J,
or 1.94 × 1011 J.

A simple calculation then showed that about
1/5000 of the Sun’s mass over a period of 6000
years would suffice to account for the energy given
off by the Sun. It must be remembered that this
would represent about 70 times the mass of the
Earth! We can quickly check this.

The Sun’s energy output was found to be about
3.6 × 1026 J s−1. Therefore in 6000 years time
the Sun will have liberated 6000 × 3.15 × 107 ×
3.6 × 1026 or 6.8 × 1037 J. Dividing this by the
kinetic energy of a 1 kg mass falling in we get
6.8 × 1037/1.94 × 1011 or 3.5 × 1026 kg. This
is 3.5 × 1026/2 × 1030, or 1/5000 of the mass of
the Sun. However, by about 1861, Kelvin rejected
this theory also, because

1. There was no spectroscopic evidence found
that anything faster than about 1/20 of the
escape velocity of the Sun is found in the
vicinity of the Sun.

2. The effect of the additional mass of the Sun
on the period of rotation of the Earth would
have been detected.

Kelvin calculated this effect and found that it
would be about 1/8 of a year in a 2000 year
period. His calculations are quite sophisticated
but we can check his value with a relatively
simple approach, using Kepler’s third law and
Newtonian mechanics. Kelvin then argued that
such a discrepancy would have been found and
therefore he finally accepted Helmholtz’s theory
of gravitational contraction as the only viable one
(see Block C1).

Kelvin’s commitment to the gravitational
model of Helmholtz emerged only gradually,
starting with his early recognition of the soundness
of Helmholtz’s ideas after reading his lecture of
1857 to the time he developed his model for the
cooling of the Earth in 1862. At the beginning he
thought that his meteoric theory and Helmholtz’s
gravitational collapse theory would complement
each other, but by 1862 he grudgingly deferred to
Helmholtz. Kelvin did calculate the age of the Sun,
using both a linear and an exponentially decreasing
density. He found that for the first case the age of
the Sun was 20 million years and for the second
about 60 million years. So he was able to push
the age of the Sun to three times the value based
on Helmholtz’s simple model. Kelvin’s models
predicted that a gravitational shrinkage rate was
very close to that calculated by Helmholtz. It
is interesting to note that he estimated that about
80% of the mass of the Sun was contained inside
a sphere of half the radius.

Kelvin calculates the age of the Earth
Having established that the Sun is at least 20
million years old, and probably as old as 60 million
years, Kelvin set out to determine the age of the
Earth. His seminal paper ‘On the Secular Cooling
of the Earth’ was published in 1862 and produced
an instant sensation in both scientific and public
domains. Kelvin made the following assumptions,
as recorded in his paper:

1. Most of the Earth’s heat was originally
generated by gravitational energy.
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2. The Earth cooled from a temperature of about
3700 ◦C to the present temperature of about
0 ◦C very quickly, probably in about 40 000–
50 000 years.

3. The average temperature of the Earth’s
surface has not changed significantly since
then.

4. The interior of the Earth is solid and therefore
only conduction is significant.

5. In all parts of the Earth a gradually increasing
temperature has been found in going deeper.
This finding implies a continual loss of heat
by conduction.

6. Since the upper crust does not become hotter
from year to year, there must be a secular loss
of heat from the whole Earth.

The physical constants that he needed were:

1. The temperature gradient of the surface of the
Earth.

2. The specific heat capacity of the Earth’s crust.
3. The thermal conduction coefficient for the

crust.

Kelvin estimated an average for the tempera-
ture gradient to be (in modern units) 1/28 ◦C per
metre of depth and decided that the thermal con-
duction coefficient of the Earth’s crust was about
0.8 W m−1 K−1 (see table 1). Most of these data
were based on the specific heat capacities of three
Edinburgh rocks and the temperature measure-
ments were made in mines in Scotland. Kelvin
admitted that one was ignorant about the effects of
high temperatures altering the conductivities and
specific heat capacities of rocks, as well as their
latent heat of fusion. He stated that:

We must, therefore, allow very wide
limits in such an estimate as I have
attempted to make, but I say that we
may with much probability say that the
consolidation cannot have taken place
less than 20 000 000 years ago, . . . nor
more than 400 000 000 years. . .

(Kelvin 1890, p 300)

Kelvin assumed that the temperature after
solidification was 3700 ◦C at the centre and about
0 ◦C at the surface. These temperatures, he argued,
remained constant over millions of years and were
located on the two sides of an arbitrary infinite
plane in an infinite solid. Such a distribution
provides the initial conditions for the discontinuity
between the two planes. In his own words, he then:

applied one of Fourier’s elementary
solutions to the problem of finding at any
time the rate of variation of temperature
from point to point, and the actual
temperature at any point, in a solid
extending to infinity in all directions, on
the supposition that at an initial epoch
the temperature has had two different
constant values on the two sides of a
certain infinite plane

(Kelvin 1890, p 301)

(See Block C for details about Kelvin’s calcula-
tions.)

Based on the specifications given Kelvin
derived two equations:

v(x, t) = 2V

π1/2

∫ x/2
√

kt

0
dz e−z2

(1)

and
dv

dx
= V

(πkt)1/2
e−x2/4kt . (2)

The complete solution to equation (1) is

v(x, t) = V erf[x/2(kt)1/2] (3)

where erf(x) = (2/π1/2)(x − x3/3 + x5/10 +
x7/42 . . .). Here ‘erf’ is the error function and
in calculations is best obtained from tables (see
Block C).

Equation (1) allowed Kelvin to determine the
temperature as a function of depth and time and
equation (2) gave him the value of the temperature
gradient as a function of depth and time (see
Blocks C3 and C4).

Using equation (2), Kelvin showed that if

(a) the time is 1000 million years or less, then the
temperature gradient is essentially zero below
about 600 miles.

(b) the time is about 100 million years, we have
the present gradient profile of 1 ◦C per 28 m,
remaining constant to a depth of about 30 km.

Therefore, he concluded that the Earth is
probably about 100 million years old. He showed
that this gradient value should stay pretty well
constant to a depth of about 30 km. At 160 km
the temperature is constant at about 3700 ◦C (see
figure 3).

In his paper he drew the following conclusions
(converted to SI units):
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Table 1. Physical measurements.

Kelvin Today

Temperature gradient of the Earth’s crust 36 ◦C km−1 30 ◦C km−1

Heat flow through the Earth’s crust 0.8 W m−2 1 W m−2

Thermal conduction coefficient of the Earth’s crust 0.8 W m−1 K−1 1 W m−1 K−1

1. The limits of the Earth’s age are between 20
million and 400 million years.

2. The temperature gradient will remain constant
at about 1/28 m per ◦C for about 30 km.

3. During the first 1000 million years the
variation of temperature does not become
‘sensible’ at depth exceeding 910 km.

4. The temperature gradient diminishes in
inverse proportion to the square root of the
time (see equation (2)).

Finally, it is interesting to compare the
physical parameters used by Kelvin to those that
geologists accept today (table 1). Kelvin would
be pleased and would probably say that no major
changes are necessary in his model.

The decline of the reign of limited time
The physicists’ models of the age of the Earth
and the age of the Sun, as epitomized by
Kelvin’s and Helmholtz’s calculations, reigned
supreme until almost the end of the century.
These models set strict limits on the age of the
Earth. Geologists and biologists were generally
not sufficiently well trained in mathematics and
had inadequate understanding of the new science
of thermodynamics to challenge Kelvin and the
physicists in setting these strict limits. The
physicists, on the other hand, were not acquainted
with the methods and measurements made by the
geologists and generally had a low opinion of
their attempts to emulate the empirical methods
of physics.

The first serious challenge came in 1890 from
John Perry, an accomplished mathematician and
engineer, a former student of Kelvin. He argued
that for the last 30 years Kelvin’s calculations
had been repeated by schoolboys as an abstract
mathematical exercise. Having concentrated on
the mathematical details only, the assumptions
and preconceptions, ‘especially those simplifying
assumptions to facilitate calculations’, had been
lost (Burchfield 1975, p 135).

He went on to show that if we assumed that the
Earth’s conductivity were not homogeneous, but
greater near the centre by a factor of 10, the cooling
time would be increased by a factor of 56. In
addition, he argued that if some degree of fluidity
exists in the Earth, then thermal conductivity must
be supplemented by convection.

Kelvin took Perry’s argument seriously and
responded, finally conceding that it may be
possible, after all, to extend the age of the Earth
to as much as 1000 million years and not violate
the laws of physics. But he was quick to add that
the Sun’s heat placed a great limitation on the age
of the Earth. In fact, Kelvin reminded Perry that
the recent (1877) calculations made by the noted
mathematical physicist P G Tait limited the age of
the Sun to only 10 million years.

Perry suggested that perhaps there may
be other sources of energy than gravitational
contraction. Indeed, there were many mechanisms
and theories presented in the 1890s that were
supposed to account for the vast energy of the
Sun, other than gravitational. Unfortunately,
upon close scrutiny, they all violated the laws of
thermodynamics.

Perry managed to take away the feeling
of mathematical certainty from the physicists’
arguments and expose the underlying weakness
of their assumptions and the inadequacy of the
physical data they used. Meanwhile, the mass
of evidence accumulated by the geologists that
was based on improved empirical methods began
to convince them that the physicists must be
wrong about the age of the Earth. Geologists
became bolder and more confident about their
methodology and slowly freed themselves from
the domineering influence of the physicists.

New energy sources in the ‘storehouse of
creation’
In July 1903, W E Wilson, an independent
gentleman-astronomer with a longstanding inter-
est in solar heat, announced in a letter to Nature
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that a clue had been found to explain the source of
power of the Sun and the stars. The Curies had dis-
covered that one gram of radium could supply 100
calories per hour, indefinitely and without itself
cooling down to the ambient temperature. Wilson
then computed that the amount of radium which
would suffice to supply the Sun’s entire output of
energy. He found that a mere 3.6 grams per cubic
metre would be sufficient.

Wilson’s letter went unnoticed at first, but
a few months later a note appeared in Nature
that contained a similar speculation. This time,
however, the author was George Darwin, the great
biologist’s son, who tried to support his father’s
idea of very long time periods. He was also a noted
theoretical astronomer, and therefore his paper
attracted immediate attention. Darwin discussed
the implications of radioactivity for the Sun’s
heat. He reminded the readers that 50 years
earlier Kelvin, in defending his upper limit of 400
million years for the age of the Earth, said in his
1862 paper: ‘unless sources now unknown to us
are prepared in the great storehouse of creation’
(Smith and Wise 1989, p 549). Darwin went on to
explain: ‘We have recently learned the existence
of another source of energy such that the amount
of energy available is so great as to render it
impossible to say how long the Sun’s heat has
already existed, or how long it will last in the
future’ (Smith and Wise 1989, p 601).

Darwin concluded by reminding the reader
that Kelvin’s concentrated Sun model, essentially
an extension of Helmholtz’s constant density
model, allowed an upper limit of 60 million years
for the age of the Sun. Using Rutherford’s
measurements that a gram of radium could emit as
much as 109 calories of heat, he estimated that, if
the Sun were made of such radioactive material,
it could emit ‘nearly 40 times as much as the
gravitational lost energy of the homogeneous Sun,
and eight times as much as his concentrated Sun’
(Smith and Wise 1989, p 599).

A simple calculation shows that actually about
2.2 g m−3 of the Sun’s volume of radium could
supply the energy output of the Sun. If 1 g
of radium has a constant energy output of 100
calories per hour then the output is 0.116 J s−1.
Dividing the Sun’s output (as known at that time)
of 3.6 × 1026 J s−1 by 0.116 we obtain 2.2 g m−3.

Finally, we will calculate the age of the Sun,
based on Rutherford’s estimate that 1 g of radium

has an energy content of about 1 × 109 calories,
or 4.2 × 1012 J. The mass requirement of the Sun
is 3.6 × 1026/4.2 × 1012 = 8.57 × 1013 kg s−1.
Dividing this quantity into the mass of the Sun we
get about 740 million years, or, as Darwin claimed,
‘40 times as much as the gravitational lost energy
of the homogeneous Sun’.

Darwin was pleased with the dramatic result
that came from a simple ‘back-of-an-envelope’
calculation.

The embarrassing problem of having the age
of the Sun smaller than the age of the Earth was
thus solved. But only in the minds of the younger
physicists and geologists. Kelvin was approached
in 1906 by one of his former students, James
Orr, who asked the following question: ‘Do you
agree, that if the Sun or Earth contains even a
small amount of radioactive matter, all physical
calculations of age and heat are overturned, and the
old ratios of the geologists are restored?’ (Smith
and Wise 1989, p 610).

Kelvin seemed unmoved and did not concede.
He remained committed to the primacy of
the gravitational theory. There is, however,
anecdotal evidence that privately Kelvin did
concede. According to a conversation he had
with J J Thomson in 1904, Kelvin apparently was
willing to admit that ‘radioactivity made some
of the assumptions untenable’ (Burchfield 1975,
p 165). But no retraction was ever published.

Beyond radioactive energy
The discovery of radioactivity had two dramatic
effects on the debate about the age of the Earth.
First, it quickly became clear that since radioactive
sources were found everywhere, including deep
in the crust of the Earth, the heat budget of the
Earth could not be reliably estimated. Secondly,
by about 1910 the new methods of radioactive
dating held the promise of finding a reliable way
to determine the age of the Earth.

The source of the energy of the Sun, however,
remained a mystery. By 1905 most physicists
believed that radioactive energy must be somehow
responsible for the awesome energy output of the
Sun. Helium was known to be the byproduct
of radioactivity and helium was found in the
Sun. But there were objections: ‘Why was
Becquerel radiation (beta and gamma rays) absent
from the solar spectrum?’ And: ‘Should they
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not be emanating from the Sun?’ ‘Why did
they not appear in the solar spectrum?’ The
physicist Robert Strutt, son of Kelvin’s close friend
Lord Rayleigh, showed that any beta or gamma
radiation would be filtered out by the Sun. He
also pointed out that the presence of helium in the
Sun did give convincing evidence that the Sun was
powered by radioactive energy.

The arguments for and against the Sun being
powered by radioactive energy continued but by
the 1920s the problem of the Sun’s energy was
overshadowed by the problem of finding reliable
methods for dating the Earth and accounting for
the heat energy observed coming from the Earth.

Block A.
A1. Newton’s thought experiment

Newton must have made a quick mental
calculation: if it takes about 1 hour for the 1 inch
(2.54 cm) globe to cool to about room temperature
from red hot, it would take a globe of the size of
the Earth about 50 000 years to cool, because

T ∼ 12.8 × 106

2.54 × 10−2
hours

which is a little more than 50 000 years. (The
diameter of the Earth is approximately 12 800 km.)

A2. To find the cooling time for a hot sphere

Stefan’s law of radiation states that the rate at
which an object radiates heat per unit area is
proportional to the fourth power of the absolute
temperature:

H ∝ T 4 or H = eσT 4.

We now define Q as the total rate of heat energy
leaving the body per unit time:

dQ/dt = eσAT 4

where e is the emissivity of the object (between 0
and 1), σ is a universal constant equal to 5.7×10−8

W m−2 K−4, A is the surface area and T is the
absolute temperature.

In order to find the approximate time
for cooling we will assume that the ambient
temperature Tf is 0 K. This will be almost true in
space but not in a room. First we combine Stefan’s
law and the Joule energy content: dQ = mc dT

where c is the specific heat capacity and m the mass
of the radiating object. Combining these equations
and rearranging leads to

T −4 dT = (Aeσ/mc) dt.

Integrating both sides we obtain∫ Tf

Ti

T −4 dT = (Aeσ/mc)

∫ t

0
dt

where the temperature changes from Ti to Tf . We
have

1
3 (1/T 3

f − 1/T 3
i ) = (Aeσ/mc)t

or
t = (1/T 3

f − 1/T 3
i )mc/3eσA.

We are assuming that the conduction of heat
through the metallic sphere is very rapid.

Applying this formula to the small sphere, we
find that the cooling time is about 47 minutes.
The sphere was assumed to have a diameter of
2.54 × 10−2 m and a density of 8.0 × 103 kg m−3.

To find the time of cooling of a globe of the
size of the Earth that is made entirely of iron, we
again assume that, as the globe cools, at any time
the temperature of the large sphere is the same
everywhere. The mass of the iron globe is M =
8.7 × 1024 kg, the surface area is A = 5.14 × 1014

m2. Substituting into our formula we get about
45 000 years.

Block B.
B1. The life expectancy of the Sun made of coal

It was known that coal contained about 3.0 × 107

J kg−1 of potential energy of combustion. The
energy output of the Sun was thought to be about
3.6 × 1026 J s−1 for the whole surface. The mass
of the Sun was known to be about 2.0 × 1030 kg.
Therefore, the maximum life expectancy of the
Sun would be

2.0 × 1030 × 3.0 × 107

3.6 × 1026
s = about 5000 years.

B2. To determine the the gravitational potential
energy of the Sun of constant density

Assume that the Sun grows by accretion of mass
that falls in from far away, or infinity (figure 1).
The density of the Sun is constant and at a distance
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Figure 1. Helmholtz’s gravitational contraction
model: to find the age of the Sun.

x the Sun accumulates a mass dm. The amount of
work done by the mass dm falling from infinity is

dW = GMx dm

x
.

Therefore, making use of Mx = 4
3πρx3 and

dm = 4πx2ρ dx leads to

dW = 16

3
π2Gρ2x4 dx.

Integrating (x changing from 0 to R) we get

W = 16

3
π2Gρ2 R5

5
.

Using ρ = 1.4 × 103 kg m−3 and R = 7 × 108 m
gives

W = 2.3 × 1041 J.

We can easily show that this is equivalent
to the expression Helmholtz arrived at, by
substituting the following:

ρ = M/V = M/ 4
3πR3 and g = Gm/r2

W = 16

3
π2Gρ2 r5

5
= 16

3
π2G

(
M

4
3πR3

)2
r5

5

or, as Helmholtz wrote it,

V = 3r2M2g

5Rm
.

This result is best expressed in the compact form

V = 3GM2

5R
.

B3. To estimate the age of the Sun

Since we know the energy output of the Sun
S, we can estimate the age simply by dividing
the gravitational potential energy by this energy
output:

t = W/S = 2.3 × 1041

3.6 × 1026
s � 21 million years.

B4. To find the temperature of the Sun

Following Helmholtz, we simply use the equation
of Joule and relate it to the gravitational potential
energy:

H = Mc�T and W = AH.

Therefore

Amc�T = 3r2Mg

5Rm
.

Solving for T (�T ) we have

T = 3r2M

5ARmc
g.

This is the same result as Helmholtz’s.

B5. To estimate the pressure at the centre of Sun

Only a very simple calculation is needed to
estimate the pressure. One calculates the force
produced by a 1 m2 column of the Sun’s gas,
having a height of 7 × 108 m, an average density
of 1.4×103 kg m−3, and the average gravity being
that of the middle, or 270/2 m s−2, or 135 m s−2.

F (on 1 m2 area) = mg

= 7 × 108 × 1.4 × 103 × 135

= 1.3 × 1014 N m−2.

B6. To determine the gravitational shrinkage of
the Sun

A simple model would be the following. Assume
that the Sun has a constant density of about
1.4 × 103 kg m−3. The gravity then will decrease
linearly as we descend toward the centre of the
Sun (see figure 2). Clearly, the whole mass of
the Sun must be imagined to shrink. Assume that
the top sinks by 1 metre. Then halfway down the
shrinkage will be 0.5 m and in the centre zero. For
our simple model then the work done for a 1 m
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Figure 2. Helmholtz’s gravitational contraction
model: the energy of the Sun is produced by the
shrinkage rate of the Sun.

shrinkage on top is equivalent to the work done
by the whole mass of the Sun being concentrated
at the midpoint where the gravity is half that on
the surface and the shrinkage is 0.5 m. Since the
gravity gs on the surface is 270 m s−2 we have

W = Ms × (gs/2) × 0.5

= 2 × 1030 × (270/2) × 0.5 = 1.35 × 1032 J.

Therefore, the time taken to fall through 1 m
is 1.35 × 1032/3.6 × 1026 = 1.2 × 10−2 years.
This means that according to our simple model
the Sun will contract about 84 m per year, or about
8.4×104 m per 1000 years. Could this magnitude
of shrinkage be observed? This is only about
1/1000 of the radius of the Sun and could therefore
not be observed. Helmholtz calculated the Sun’s
contraction rate to be 76 m per year, which is very
close to our result.

Block C.
C1. Kelvin’s meteoric theory

Kelvin calculated the effect of the additional
mass of the Sun from meteoric impacts on the
period of rotation of the Earth and found that it
would be about 1/8 of a year in a 2000 year
period. His calculations are quite sophisticated
but we can check this value with a relatively
simple calculation using Kepler’s third law and
Newtonian mechanics:

P 2 = (4π2/GM)R3.

We will simply compare the period of the Earth
around the Sun 6000 years ago with the period
today, keeping everything constant except the
change in the mass of the Sun. We will take
365.000 0 days as the year 6000 years ago. The

mass of the Sun changes from 1.0000 to 1.0002
units in that time. Therefore,

P1/P2 = (M2/M1)
1/2

P2 = P1 × 1.0001 = 365.0365 days.

Let us say that the average change is half of that,
or 0.01825 days per year. The total change in that
time then is 6000×0.01825, or 110 days. For 2000
years then the change is 37 days, or 0.10 years.
This is very close to Kelvin’s value of 0.125 years.

C2. Kelvin’s calculations to determine the age of
the Earth

Kelvin used the well known equation of heat
conduction:

∂v/∂t = k∂2v/∂x2. (C.1)

Using Fourier integrals he showed that:

v = 2V

π1/2

∫ x/2
√

kt

0
dz e−z2

(C.2)

where z is a dummy variable. By differentiating
the above equation he obtained the temperature
gradient:

dv

dx
= V

(πkt)1/2
e−x2/4kt (C.3)

where k is the conductivity of the solid, V is the
initial temperature (3700 ◦C), x is the distance
from the surface of the Earth, v is the temperature
of the point x at time t , and dv/dx is the rate
of variation of temperature per unit length, as we
descend into the Earth.

Kelvin then plotted a graph that showed the
thermal gradient and the temperature change as a
function of the distance below the Earth’s surface
(see figure 3).

C3. A more detailed discussion of Kelvin’s
mathematics

The following problem can be found in standard
advanced books on mathematical physics, and
approximates Kelvin’s model for the calculation
of temperature in his article of 1862.

• A semi-infinite thin bar (x � 0) whose surface
is insulated has an initial temperature equal
to f (x). A temperature of zero is suddenly
applied (at t = 0) to the end x = 0 and is
maintained. Find the temperature distribution
as a function of t and x.
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Using equation (1), applying boundary conditions
and using a Fourier series, it can be shown that

v(x, t) = 2V

π1/2

∫ x/2
√

kt

0
dz e−z2

= V erf[x/2(kt)1/2]. (C.4)

(Kelvin mentions in a footnote in his article that
“A table of values of this integral, sometimes
now called the ‘Error Function’, is to be found in
Table III of de Morgan’s article on ‘The Theory
of Probabilities’, Encyclopedia Metropolitana,
Edition 1845, Vol. ii.”).

To solve for the temperature v, as we descend
into the Earth’s interior we can use conventional
tables of the ‘Error Function’, as Kelvin may have
done. Or we can use the series solution of the erf:

erf(x) = (2/π1/2)(x −x3/3 +x5/10 +x7/42 . . .).

(C.5)
But we are looking for the solution of

erf(x/a)1/2 = (2/π1/2)[x/a − (x/a)3/3

+(x/a)5/10 . . .] (C.6)

where a = 2(kt)1/2. Therefore

v(x, t) = V erf[x/2(kt)1/2]

= (2/π1/2)V [x/a − (x/a)3/3 + (x/a)5/10 . . .].

(C.7)

The temperature v as a function of distance x

can now be plotted and produces the graph shown
in figure 3. Notice that the temperature v is almost
linear up to x = a (about 122 km). For example,
the temperature at a depth of 12.2 km is simply:

12 200/28 ◦C, or 436 ◦C.

If we use equation (C.7) for the temperature,
we obtain 439 ◦C. However, at x � 1.5a, the
temperature begins to change very quickly as the
‘erf’ predicts.

A note of caution should be given at this point.
In practice, tables of values for the error function
erf should be used. The reason for this is that when
x/a is greater than 1, it is difficult to evaluate the
erf: the series does not converge easily and many
terms must be evaluated to get a good result.

C4. The expression for the temperature gradient

Differentiate v with respect to x in equation (2),
using the dummy variable z = x/2(kt)1/2 to get
equation (3). Using this equation, Kelvin then
showed that for the temperature gradient to be
about 1/28 m per ◦C, the time is about 108 years.

Figure 3. Kelvin’s graph of the cooling of the Earth
for t = 100 000 000 years.
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