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Physics  and the Dambusters 

Arthur Stinner 

The story of an engineer seeing an idea come to Guy  Gibson  and  Michael  Redgrave  as  Dr  Barnes 
fruition against great odds. High-grade scien- Wallis) and on  the  popular  book of the  same  title 
tific research is combined with high adventure. written by Paul  Brickhill, first published in 1951. 
This provides a  context that generates challeng- The  headings  were  chosen  from  the  dialogue in the 
ing  problems for physics students. movie. 

The  story of the  Dambusters  has  captured  the imagi- 
nation of every  generation  since  the  Second  World 
War.  We  remember  the  picture of the  Lancaster 
bombers flying low above  the  water  at night to  drop 
barrel-shaped  bombs,  spinning  and  then  bouncing 
on the  surface,  and  hurtling  inexorably  toward  their 
target.  The successful attack  on  the  great  dams of 
Germany  dominated  the news everywhere on that 
day in May 1943. 

Behind  the  extraordinary  human  effort of co- 
operation  and  heroism,  however,  there is another 
story.  This is the  story of an  applied  scientist  seeing 
a  plausible  idea  coming  to  fruition  against  seemingly 
insurmountable  odds.  It  admirably  illustrates  the 
relationship  between  theoretical  science  (in  this  case 
physics) and  technology  and  contains  many of the 
ingredients of high-grade scientific research.  It  also 
shows  that scientific research  cannot  be  captured by 
a  clearly  specifiable ‘scientific method’,  as  science 
texts claim it  can.  Rather, it must  be  understood  as 
part of a social and political context  and  seen  as 
governed by human  imagination,  perseverance  and 
plain  good  luck. 

The  story of the  research  that  preceded  the 
famous  raid is briefly reconstructed  here  and  an 
attempt is made  to actively  involve the scientifically 
inclined  reader.  In  fact,  this is an  example of a large 
context  problem that  the  author is using  to  teach 
physics. This  type of investigation is especially suit- 
able  for  GCSE  and  A-level  students. 

All  information  used is based  on  the well known 
1954 movie The Darnbusters (with  Richard  Todd  as 
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’What can I do to shorten the  war?’ 

Barnes Wallis had  been  working  at  Vickers- 
Armstrong as an  aircraft  structural  engineer  since 
before  the  First  World  War. In the 1920s he 
designed  the  R100,  the  most successful British  air- 
ship,  and in the 1930s he  invented  the  geodetic  form 
of aircraft  construction, which resulted in the  build- 
ing of the  Wellington  bomber.  At  the  outbreak of 
the  war  he  decided  to  investigate  the  construction 
and  deployment of super-bombs  that  could  destroy 
large  and significant targets such as  the  great  dams 
of the  Ruhr in Germany, with minimal  damage  to 
people.  The  destructiveness of such bombs,  he  rea- 
soned,  would  be  due  not  only  to  their size but  also 
to  their  proximity to the  dam.  When  they  exploded 
close to  a  dam  they  should  produce very powerful 
shock waves that  travelled  through  the  concrete. 
Wallis came  to this conclusion  when  remembering 
something  he  read  about  the  shattering of concrete 
piles driven  into  the  bed of the  Thames  during  the 
construction of Waterloo  Bridge. In an engineering 
journal of 1935 he  found  the  article  that  described 
the  formation of shock waves in concrete. I t  seemed 
that  the  sudden blow produced by the  large  ham- 
mers  sent  shock  waves  down  the  piles.  and  part of 
the  energy was then  reflected  upon  encountering  the 
ground.  another solid medium.  The reflected shock 
wave,  travelling  at  an  estimated 5000 metres  per 
second, always reached  the  top  before  the  hammer 
could  strike  again. Since the  shock waves passed 
into  an  .empty’  medium  the effect  was one of ten- 
sion on  the  concrete.  Concrete,  however, is very 
resistant  to  compression,  but  not  to  tension.  The 
piles therefore  shattered. Wallis extrapolated  from 
these  known  facts to a  bomb  exploding  under  water 
near  a  large  dam.  He  thought  that  a  large  bomb 
dropped  from  a  great  height  could  destroy  the  dam 
as long as it dropped  to  a  depth of about 15 m close 
to the  dam.  Shockwaves  would  do  the  rest. 



'Only a question of working it out paper' 
Such bombs, he calculated, would need  a mass of at 
least 10 tonnes.  Furthermore, they would have to be 
carried by a 50 tonne bomber at 140 m S - '  (320 mph) 
and at a height of 14 km! Wallis knew that  both  the 
bomb and the aircraft could be built with the techno- 
logy of 1940, so he wrote up a  proposal for the 
committee  appointed to evaluate his idea. This pro- 
posal would have  been filed under  what the Air 
Force called 'revolutionary, complicated and  crack- 
pot theory' if it  had not  been  for Wallis's reputation 
and one  man,  Arthur  Tedder, then an air vice- 
marshal, who believed in the  idea. 

Wallis was  now  given the resources to build a 
model dam to test out his ideas. He built a scale 
model of one-fiftieth the size of the  Mohne,  the 
largest of the  German  dams, with tiny cubes of 
concrete, scale models of huge masonry blocks that 

were part  of  the structure of the dam. Wallis 
exploded  a few ounces ( - 100 g) of gelignite under 
the water 1.2 m from the wall to give the effect of a 
10 tonne bomb  exploding about 60 m away from the 
real dam.  The effect was less than spectacular, so he 
moved the explosive to  0.9 m  and  then  0.6  m. Still 
there was no damage to  the wall. Then he placed the 
gelignite a  distance of 0.3 m from the wall (equiva- 
lent to placing a 10 tonne bomb 15 m from the 
Mohne), but even then  there were only minor 
cracks. He tried larger charges,  and finally about 
150g of the explosive 0.3 m away breached the 
model dam.  He calculated that in the real case a 
charge of 13 tonnes at a distance of  15 m from the 
dam would breach it. A simple calculation showed 
that it would require 18 tonnes of steel casing, for  a 
total of  31 tonnes!  It was clear that  the next meeting 
with the committee would be the last one. 

136 milllon tonnes 

Figure 1. Mohne Dam. 
Problem I 
After working out many  of his ideas on paper Wallis experimented on a model of the  Mohne Dam.  The model 
was scaled down to 150. 

1. Find the dimensions of the model dam. 
2. If the model  had been built faithfully in all directions, how much water should it have been able to hold? 
3. Compare the pressure at 15 m  for  the  Mohne dam with the  corresponding pressure for the model. 
4. About 90 g  of  gelignite explosive under water and 1.2 m away from the model was sufficient to break the 

model. Based on  that  information alone Wallis claimed that about 10 tonnes of the same explosive under 
water, and at a distance of about 60 m, would breach the Mohne. Show  that  this is a good estimate. 

5. Wallis then calculated that the steel casing for  the sphere that  could safely accommodate 10 tonnes of 
explosive should have a mass of 18 tonnes. The density of steel (iron) is about 7900 kg m-3  and the density of 
the explosive is about 800 kg m-3. Now: 

( a )  determine  the mean radius of  the sphere; 
(bl determine  the  approximate thickness of the shell; 
(c) considering the dimensions and carrying capacity of a Lancaster bomber (see figure 2). comment on the 

possibility  of accommodating such a bomb. 

Figure 2. Initial design of the bomb. 
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Figure 3. Nelson’s skipping cannon balls. 

’You can’t hurry this kind of research‘ 

The  next  time Wallis met his committee  (now  more 
appropriately  called  ‘The  Air  Attack  on  Dams 
Committee’,  focusing  the  aim of the  enterprise  more 
definitely)  he  wanted  to  present  them  with  a  solution 
to  the  problem of placing  a 5 tonne  bomb  under 
water  close  to  the  dam.  The  inspiration  that  led  to  a 
solution  seems  to  have  come  from  two  sources: his 
experience  as  a  father  skipping  stones  with his  chil- 
dren  on  water  and  remembering  that  Admiral 
Nelson  occasionally  had  cannon balls ricochet  on 
water  for  greater  accuracy  when  engaged in a  naval 
battl! (figure 3). H e  now  envisaged  bombs  skipping 
on  water  over  torpedo  nets,  slithering  to  stop  as  they 
reached  the wall of the  dam.  The  bombs  then  would 
sink  to  a  preset  depth  determined by a  hydrostatic 
trigger  that  would  set off a  fuse. 

When  pressed  for  the  details of his ‘theory’,  how- 
ever, Wallis was  reluctant  to  disclose  how  he 
thought  the  bombs  should  be  released.  One  member 
of the  committee  spoke  up  for  him,  saving him the 
embarrassment of having  to  explain his not yet well 
formed  idea: ‘If I  had  a  partly  formed  theory  I 
certainly  should  not  want  to  talk  about it until it was 
clearly  established in my own  mind.’ 

In  his  garden in Dorset, Wallis promptly  built  a 
makeshift  apparatus  to  test  out his ideas of skipping 

Figure 4. Wallis‘s home-made experiment. 

a  bomb  on  water.  The  simple  apparatus  consisted of 
a  rubber  catapult,  placed  a  metre  or so away  from  a 
tub full of water,  just  a  few  centimetres  above  the 
water  level. H e  stretched  a  string  (attached  to  two 
sticks)  about  a  metre on the  other  side of the  tub so 
that  the  string  was  also  just  above  the level of the 
water (figure 4). 

Wallis borrowed  a  marble  from his daughter  and 
shot it from  the  catapult  at  the  water.  His  children 
assisted  him in making  measurements  and  generally 
amused  themselves with  this strange  game.  He 
decided  that,  indeed, it was  possible  to  control  one 
skip,  but  could  one  control  many  skips? 

In  order  to  answer  that  question,  clearly  a  larger 
tank was needed  with  more  facilities,  including an 
underwater  camera.  Before  ‘The  Air  Attack  on 
Dams  Committee’  granted him permission  to use 
the  huge  ship-testing  tank  at  Teddington,  however, 
he  had  to  convince  the  members  that small charges 
of gelignite  placed  under  water against the wall 
would  breach  it.  A  new  model  dam was  built for him 
and  he  convinced  the  members of the feasibility of 
his plan  when  only  a  hundred  grams or so of the 
explosive so placed  breached  the wall time  after 
time.  With  this  new  knowledge  he was able  to  cut 
down  the  required  theoretical  mass of the  bomb  to  a 
manageable 4.3 tonnes  consisting of 2.7 tonnes of 

W \ -/r I 
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Problem II 
1. When Wallis discovered that he needed only 4. Now  find the  impact force for a drop from 

about 2.7 tonnes of explosives to do the job, the 18 m. Assume that in  this case the bomb sinks to a 
prospects of building a spherical bomb that  could depth of  3/8 of  the diameter. How do the forces 
be accommodated brightened. Calculate the aver- compare? Comment. 
age radius of the bomb. 

2. The force of impact (average force) of such a 
, bomb  on water after falling from a height  of 75 m is n 
1 (a) First, find the speed of impact, assuming that 

enormous. n 
air resistance is negligible. 
(b) Then calculate the average force of impact of 

the sphere if it sinks to a depth of 3/4 of its 

3. What is the  buoyant force on the sphere at the 
diameter. "4 ;?/U L 

moment  of maximum  immersion? Figure 5. Spherical bombs skipping over water. 

Problem 111 
1. All of  us have tried skipping stones on water. 

What is surprising is that  the physics of a skipping 
stone is not  well understood. In the August 1968 
issue of  the Scientific American, for example, a 
large section of  the regular feature 'The Amateur 
Scientist' was devoted to convincing  the reader of 
just  that. It showed, among other unexpected find- 
ings, that  the stone does not bounce along the 
water in a series of successively shorter leaps until 
it finally stops, as one would expect. Rather, the 
stone may skip a short distance first and then skip a 
much longer distance. Wallis discovered that even 
with a perfectly spherical object like a golfball  you 
do not get this expected trajectory of successively 
diminishing bounces because  of the spin  imparted 
to the  ball on contact with the water. Look up the 
article in  the Scientific American  and study it-you 
may be the first one to  find a  solution to this 
puzzling problem. If you do,  please contact the 
author of this article! 

2. Using a tennis ball we can investigate the 
trajectory  of  a ball bouncing at a high horizontal 
speed. Ideally one should have access to a 'gun' 
like those tennis coaches  use. Failing that, rig up a 
simple  sling shot (or catapult) of the  type Wallis put 
together. You could, of  course, simply throw the 
ball  horizontally. Use a large area (like the floor of a 
school gymnasium) and observe the motion of  the 
tennis  ball. With the aid of several friends  you 
could mark the places where the  ball bounces. 
Note, for example, what kind of spin is imparted to 
the  ball on contact. 

Now consider the following problems. 
3. A  tennis ball is projected horizontally from a 

catapult at a  height of  1.00 m. The first contact is 
made at a distance of 5.25 m. Assume that  the  ball 
bounces back to 50% of  its  previous  height  upon 
each impact. 

(a) Predict the  bouncing distances dl, d2, d3 , , . . 
(b) What should be the speed of  the ball so that it 

would land at a spot 20 m away? 
( c )  Write down an equation that relates total 

distance d, number  of bounces n and the  initial 
speed vi, for this ideal situation. 

Figure 6. A  skipping stone. 

I h  -r-"."r 

dl 4 d3 dL 

Figure 7. Idealised trajectory of a tennis ball. 

4. According to this  simple  model  of a ball 
projected horizontally over a level surface the hori- 
zontal component  of  the velocity stays constant. 
The bouncing ball's velocity must, of  course, also 
diminish. Now account for a progressive reduction 
of  velocity as well. Consider the above problem if 
the  reduction  of the horizontal velocity is to 80% 
after each contact point. 

In reality, however, one should also try  to 
account for  the spin of  the ball, a difficult  problem 
to solve. Jearl Walker (19851, for example, claims 
that a ball  projected without spin will bounce as 
shown in figure 8. Test this claim. How would you 
give this kind of  trajectory a mathematical descrip- 
tion? 

Figure 8. Trajectory of a tennis ball? 
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RDX explosive  and a case 1.6 tonnes.  Permission 
was now  granted  to  use  the  large  tank  at 
Teddington. 

The  experiments  at  Teddington  were  begun  and 
continued  for five months,  much  to  the  displeasure 
of the  committee.  The  objective  was  to  control a 
skipping  missile,  to find out  how  speed,  height of 
launching,  number of bounces  and  the  desired  dis- 
tance  were  related. Wallis first thought  that  the 
missile should  be  spherical so that  identical  contact- 
area  hits  would  be  guaranteed.  But it soon  became 
obvious  that  the  bounces  were  too  often  unpredic- 
table,  even  though  he  used  larger  spheres, first golf 
balls and  then 1 kg  spheres of steel.  It  took  some 
time  but  he  found  the  answer:  the first bounce  gave 
the  sphere a top-spin  and  that is why the golf balls 
tended  to  dig  themselves  into  the  water.  Would flat 
discs be  preferable?  The  answer  was a clear no, as 
anyone  who  has  carefully  observed  the  skipping of 
stones  on  water or sand  would  agree. Wallis now 
rigged up a cradle  for  the  spring-loaded  catapult  that 
would give the missiles  a pronounced  back-spin.  The 
back-spin  not  only  allowed  him  to  control  the dis- 
tance  but  provided  him  with a serendipitous  effect: 
the  residual  back-spin  toward  the  end of the run 
made  the  sphere  go  under  the  water  at  the  far  end. 
This  was  exactly  what  he  wanted!  At  this  point in the 
movie  we  hear  him  say  to one committee  member: 
'There is a  fine dividing  line  between  inspiration  and 
obsession . . . it is sometimes  very  hard  to  know 
which side  you  are  on'.  And a  little later  he  says: 
'One  goes on and  on . . . as if against a  brick wall, 
then  suddenly a  light flashes.' 

'Just when you think you have solved a 
problem . . .' 
The size of the  sphere  required  to  carry  the RDX 
explosive,  however,  turned  out  to  be  unmanageably 
large.  The  steel  case  had  to  be  strong  enough  to 
withstand  the  impact  with  water  at well over 
90ms"  (200mph).   I t  was evident  that  even if the 
monstrous  spherical  bomb  could  be  attached  to  the 
Lancaster,  the  aircraft  could  not  be  moved  without 
the  danger of risking  collapse  before  take-off!  What 
he  needed  was a different  shape  that  would  be  large 
enough  and  make  contact  with  water on identical 
surface  areas. A large  cylinder  would do  it,  provid- 
ing that it did  not tilt during  the  trajectory.  How do 
you  prevent a cylinder  from  tilting? By making it 
spin, of course! He  knew,  for  example,  that it took a 
considerable  force to tilt  a spinning bicycle wheel. 
The  same  gyroscopic  principles  must  apply to a 
spinning  cylinder.  The  answer  was  now  clear:  shape 
a  missile like a portly  barrel  with sufficient back-spin 
to  keep  it  gyroscopically  on a level axis all the way to 
the  end of the  trajectory. 
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The  theory  was  tested  with  model  barrels using 
various  weightlsize  ratios  to  make  sure  that  the  real 
bomb  could  be  carried  under a Lancaster. By trial 
and  error  he  found  the  speed  necessary for each 
model  to  traverse  the  required  distance.  The  spin of 
the  barrel  was  also  found by trial  and  error  and was 
shown  to  be  between 450 and 500 revolutions  per 
minute  backwards.  Would a  full-size bomb  behave 
as  the  theory  and  the  scaled-down  experiments  pre- 
dicted? Wallis was  convinced it would  work. 
However,  only  after  weeks of anxious  waiting  and 
arguing with various  members of the  Ministry of 
Supplies  did  he  receive  the  services of one 
Wellington  bomber. 

The  new  bomb  was  tested  as soon as the 

R= radlus 
L =Length 
"moss 

Figure 9. Cylindrical  bombs. 

Problem IV 
A spinning  top,  a  bicycle  wheel  and  a  spinning 
cylindrical  barrel are very  stable.  Wallis  designed 
the  barrel so that it could  withstand  a  spin  of  up  to 
500 revolutions  per  minute.  The  high  rotation  was 
used  to  fulfil two requirements:  to  give  the  bomb 
stability  throughout  the  trajectory,  and to  make 
sure  that  a  little  spin  was  left  over  when it hit  the 
dam.  The  length of the  cylindrical  bomb  was  about 
2.1 m, the  mass  of  the RDX explosive 2.7 tonnes 
and  the  mass  of  the  case 1.6 tonnes. 

1. Find  the  approximate  diameter  of  the  cylindri- 
cal bomb. 

2. You  probably  know  what  happens  when,  sit- 
ting  on a  rotating  piano  stool,  you  attempt  to  twist 
a spinning  bicycle  wheel. 

(a )  From  this  knowledge  extrapolate to  the  stabi- 
lity  (the  bomb's  tendency  to  maintain  its  direction) 
of  a  rapidly  spinning  cylindrical  bomb. 
(b) Speculate on  how  carrying a  spinning 

cylinder of this size must  have  affected  the  stability 
of  the  aircraft  in  flight. 

(c) How, do  you  think,  did  the releasing of  the 
spinning  bomb affect  the  stability  of  the  flight? 

3. The  centripetal  forces are very  large at these 
high  rotational  speeds  and  they  must  be  known to  
ensure  the  safety  of  the  structure  of  the  casing. 
Calculate the  maximum  centripetal  force  on  the  rim 
of  the  spinning  cylinder.  Express  this  value  in  terms 
of g, the  acceleration  due  to  gravity. 

4. The  energy  required  to  make  the  large 
cylinder  rotate at 480 revolutions  per  minute  isvery 
large.  Calculate  this  energy.  Consider  the  mass of 
the  cylinder  to  be  evenly  distributed. 



Wellington  was  converted.  The  impact,  however, 
damaged  the  bomb  and  the  trajectory  went  array. 
The  casing  was  strengthened,  but  from  a  height of 
45 m  the  bombs still shattered.  Finally,  in  despe- 
ration  he  asked  Wing  Commander  Guy  Gibson,  the 
leader of Squadron  617  (later  called  the  'Dambus- 
ters')  to  try flying at  an  altitude of 18 m. H e  was  sure 
that  at  that  height  the  bomb  would  not  shatter. 
After  weeks of practising flying at  that  altitude 
Gibson  was satisfied that it was  safe  (at  least  during 
the  day)  and  they  made  a  trial  drop.  The  bomb 
performed  perfectly.  Wallis  was  happy. 

Plywood bombsights and steel spotlights 

There  were still two  small  problems to  be  solved 
before  an  actual  attack  could  be  made.  One  had  to 
do with  keeping  the  aircraft  at  the  correct  height  to 
within  a  metre.  The  other  problem  was  connected 
with  the  need  to  drop  the  bomb  at  a  certain  distance 
in front of the  dam.  Gibson  suggested  that  they 
dangle  a  wire  with  a  weight  on it from  the  aircraft so 
that  it  would  touch  the  water  at  the  correct  height. 
They  tried  it,  but  at  the  required  speed  the  line  was 
trailing  behind  almost  horizontally! 

The  solution  came  a  little  later,  an  idea  attributed 
to  the  'back-room'  boys.  It  was  a  simple  idea  but 
very effective:  put  a  spotlight  under  the  nose  and 

another  one  under  the belly of the  aircraft,  both 
pointing  down,  adjusted so that  the  lights  would 
meet  in  a  figure 8 at  the  preset  height (figure 10). 

The  solution  to  the  second  problem  was  equally 
simple.  It  seems  that  a  carpenter  put it together in 
minutes  out of bits of spare  wood  (figure 11). The 
base  was  a  triangle  made of plywood  with  a  small 
opening  to  look  through  and  two  nails  hammered 
partially in the  other  corners.  The  idea  was  to look 
through  the  small  opening  and  when  the  two  towers 
on  the  dams  were in line  with  the  nails  the  bomber 
would  press  the  release  button.  Assuming  that  both 
the  speed  and  the  height  were  correct  the  bomb 
should follow the  expected  trajectory. 

Wallis's  last task  was to  work  out  the final speed, 
altitude  and  dropping-range. H e  decided  on 
100 m S" (230 mph), 18 m  and 550 m, respectively. 
Practice  runs  were  made by Gibson  and his crew  on 
nearby  lakes,  during  the  day  and  at  night,  using  the 
plywood  bombsights  and  the  steel  spotlights.  Their 
accuracy  improved  until  they  were  able  to  drop  the 
bombs  consistently  within  metres of the  target. 
Squadron 617 was  ready  for  the  raid  on  the  dams of 
the  Ruhr.   On 17 May 1943 the mission was  carried 
out  successfully, inflicting a significant  blow to the 
German  war  machine. 

The successful raid  on  the  dams of Germany is 

Figure 10. Lancaster bomber. 

Figure 11. Plywood bombsights. 

Length321 m 
Wlngspan I 30 m 
Weght (empty)- 22 tonnes 

Tower 1 - 

" S I  
l T o e r  2 I 
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Figure 12. Idealised bomb trajectory. 

Problem V 
Just before the raid Wallis gave the following crucial data to Squadron 617: horizontal velocity 100 m S - ’ ;  
height, 18 m; dropping-range, 550 m. He had faith in the reliability of the hand-made bombsight to establish 
the  dropping-range of 550 m and in the  spotlights to guide the pilot at the  height  of 18 m. 

The author has made some calculations on the assumption that about eight bounces were required to  hit the 
dam. This assumption was based on the requirement that the speed of  the  bouncing bomb must be reduced to 
about 5  m S”. (At higher speeds we would risk the bomb’s skipping over the dam.) By developing an equation 
on  this assumption, it was found that if the  height  diminishes to about 90% of the previous height at  each 
impact, and if  the horizontal velocity decreases to about 70%  of its previous value at  each impact, then the 
bomb makes contact just before hitting  the dam with a velocity  of about 5  m S”. Remember, however, that our 
problem is still ’idealised’. We did not account for the effect of  the spin on the  cylindrical  bombs. 

1. Calculate the angle required  for the bombsight to establish the range of 550 m. 
2.  Now decide at what angle of separation the  spotlights must be placed if they are to come together at an 

altitude of 18 m. Consider them to be separated by 6 m. 
3. Use all this information  given and calculate, as for the case of  the tennis ball, the last contact point and the 

speed of  the bomb just before it hits the  wall and submerges to the preset depth. 
4. Now show  that  the equation that describes the above situation is as follows 

R- 2(2hv01g)”*(~ + a”’b + ab2 + a3”b3 + a2b4 + aSi2b5 +a3b6+. . . a7“b7+a4b8+ . . .) 
where a is the successive diminishing factor for height, O<a< 1, b is the successive diminishing factor for the 
horizontal velocity, O<b< 1, h is the height  of launching, v, is the launching velocity (assumed not to diminish 
appreciably before first  impact) and g is the acceleration due to gravity, taken as 10 m S-’. 

It is instructive to vary the values of a and b using a commonly available computer (the author used a 
Commodore 64) and see how you can fit the assigned range for a given number  of bounces. You should find 
that if you let a=0.9 and b=0.7 you will get just about the right answer. Of course,  we do not know what the 
correct values for a and bare. Only an actual scaled-down experiment would provide us with a clue as to what 
these should be for  the real case. 

Problem VI 
The Mijhne Dam had a capacity of 136 million tonnes of water. Assume that the dam was full before impact and 
that  the  surrounding area  was flooded to an average height of about half a metre. Approximately  what area did 
the flood cover? 

one of the most  celebrated military adventures of 
the Second World War.  The  idea and its imple- 
mentation  that  led  to  the  destruction of the dams 
came from the imagination  and  the  determined 
effort of a  gentle  engineering genius. In the words of 
one of the  committee members: ‘He conceived 
something  absolutely unheard-of and carried i t  
through  with  flying colours.’ The story of the 
Dambusters has been  celebrated as a military adven- 
ture  for a long  time. I t  i s  time we celebrated with 
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equal enthusiasm the  story as an imaginative scien- 
tific adventure. 

There i s  a sad postlude to  this story. When  Wallis 
heard of those who died as a  result of this raid he 
was supposed to have said, with tears in his eyes: 
‘Oh, if  I’d only  known, I’d never have started this!’ 

Let us  conclude with the following  compilation 
of pithy statements made in the movie The 
Dambusters. Each  of these relates to scientific 
research. Their  thoughtful discussion in a classroom, 



for example after viewing the movie, can yield 
information  and much clarification about  the  nature 
and the social impact of scientific research in 
general. 

1. ‘It is only a  question of working it  out  on 
paper. ’ 

2.  ‘You can’t hurry this kind of research.’ 
3. ‘There is a very thin dividing line between 

4. He thought constantly about it. 
5. That is exactly how a full-sized bomb would 

6. ‘The  idea  came  from  Nelson.’ 
7 .  ‘Everything depends  on secrecy.’ 
8. It was absurd to think how simple it was. 
9. ‘Looks clever on paper but can you make it 

10. ‘Did you invent this thing in your own head?’ 
11. ‘One goes on and on . . . as if against a brick 

12. ‘Do you mean that a 5 tonne bomb can 

13. ‘If  I’d only known, I’d never had started this!’ 

inspiration  and obsession.’ 

behave. 

work?’ 

wall, then suddenly a light flashes.’ 

bounce  along like a ping-pong ball?’ 
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ANSWERS TO PROBLEMS 

Problem I 
1. 80 cm, 16 cm,  68 cm. 
2. about 1000 tonnes. 
3.  11  50. 
4. 1 :50, (5013 X 90 g 3 10 tonnes. 
5. (a) 1.45 m; (b) 9  cm; 

(c )  bomb is too large  and  heavy. 

Problem II 
1. 93 cm. 
2. (a) 38 m S”; (b)  6 . 5 ~  lo6  N. 
3. 35 900 N. 
4. about  the  same as 2(b)  above. 

Problem 111 
3. (a )  5.25  m,  7.43 m, 5.25 m. 

(b) 10.5 m S-’ 
(C) 

d=5.25+2 ~ , ~ ( \ l l +  2 x 5  F 2‘x5 

until  equality  is  reached. 
4. 

r 
d=5.25+2 vin 0 8 -+0.8‘ 7 ( ’  42:5 4 2  X5 

+ . . . 0.8” g) 
until  equality  is  reached. 

Problem IV 
1. 1.4m. 
2. (a)  very  stable; 

(b )  very  stable, as long as straight  flight is 
maintained; 
( c )  less  stable. 

3. -200 g. 
4. 3x106  J. 

Problem V 
1.  19”. 
2. 19”. 
3. - 5  m S-’, shortly  after  the  eighth  bounce. 

Problem VI 
272 km2. 
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